Bubble Sort

* Input: an array of elements (e.g. integers)

* Output: an array containing all the elements
provided as input in sorted order

e Steps
- take two adjacent elements at a time and compare them.
* if input[i] > input[i+1]

- swap

- repeat until no more swaps are possible.

Bubble Sort

* Input: an array of elements (e.g. integers)

* Output: an array containing all the elements
provided as input in sorted order

e Steps
- take two adjacent elements at a time and compare them.
* if input[i] > input[i+1]

- swap

- repeat until no more swaps are possible.

Bubble Sort

* Input: an array of elements (e.g. integers)

* Output: an array containing all the elements
provided as input in sorted order

e Steps
- take two adjacent elements at a time and compare them.
* if input[i] > input[i+1]

- swap

- repeat until no more swaps are possible.

Bubble Sort

* Input: an array of elements (e.g. integers)

* Output: an array containing all the elements
provided as input in sorted order

e Steps
- take two adjacent elements at a time and compare them.
* if input[i] > input[i+1]

- swap

- repeat until no more swaps are possible.

7>3 swap

Bubble Sort

* Input: an array of elements (e.g. integers)

* Output: an array containing all the elements
provided as input in sorted order

e Steps
- take two adjacent elements at a time and compare them.
* if input[i] > input[i+1]

- swap

- repeat until no more swaps are possible.

Bubble Sort

* Input: an array of elements (e.g. integers)

* Output: an array containing all the elements
provided as input in sorted order

e Steps
- take two adjacent elements at a time and compare them.
* if input[i] > input[i+1]

- swap

- repeat until no more swaps are possible.

2 5 3 4 7 Repeat

Bubble Sort

-

public class Main {

el s GRLEED 1EBerse public static void main(String[] args){

public static int[] sort(int[] input){
int temp;
boolean done = false;

int[] testl = {10,3,6,7,2,4,9,5,1,8};
testl = BSort.sort(testl);
System.out.println(

) Main.intArrayAsString(testl));
while(!done){

done = true;
for (int i=0; i<(input.length -1); i++){
if(input[i] > input[i+l1l]){
temp = input[i];

}

public static String
intArrayAsString(int[] in){
StringBuffer result = new StringBuffer();

lnput[l] = 1nput[l+l] 7 result. append(" [") :
input[1i+l] = temp; for (int i = 0 ; i < in.length ;i++){
done=false;

result.append(in[i]+" ");

} }

result.append("]");
return result.toString();

}
}

return input;

}

J

java. util. Col | ecti ons provide a variety of algorithms for sorting
searching, shuffling etc.

Complexity of Bubble Sort

* Worst Case:
- input is in reverse order. (10,9,8,7,6,5,4,3,2,1)

- how many swaps

*9+8+7+...+1

(n —1)*n

2
* O(n%)
e Best Case:

- inputis in order (1,2,3,4,5,6,7,8,9,10)

- the algorithm still goes over each element once and
checks if a swap is necessary.

— 1N

Input/Output in Java (I/O)

e Lookinto] ava.l 0. *

e Information can be read from or written to a source.

— information can be

* human readable

* machine readable
- source/target can be

* afile on your file system

* a network connection (socket)

* Three roles are important for the whole setup

- Program (your code)
- The stream (the flow of information)

- The source/target 9

Input/Output in Java (I/O) (cont)

* Writing (or reading) to (or from) a stream follows a
simple template

Reading: Writing:

open a stream open a stream

while has more info while more info
get info write info

close stream close stream

10

Input/Output in Java (I/O) (cont)

* Java provides the same operations but for 2
different data, characters and bytes

e (Character Streams

- sub-divided into

* Wit er:abstract class that defines the API and partial
implementation for writers

* Reader : abstract class that defines the API and partial
implementation for readers

- Sub-classes of Reader ,W it er are specializations on
different kinds of stream:s,

* Character, string, buffered, piped etc.

11

Input/Output in Java (I/O) (cont)

* Java provides the same operations but for 2
different data, characters and bytes

* Byte Streams

- sub-divided into

* | nput St r eam abstract class that defines the API and
partial implementation for reading bytes

e Qut put St r eam abstact class that defines the API and
partial implementation for writing bytes

- Subclasses of | nput St r eamand Qut put St r eamare
specializations on different kinds of streams,

* FileStream, ObjectInputStream, ByteArrayOutputStream
etc.

12

Working with Files

* Java provides a class that represents a file on your

file SyStem° java°iO°Fﬂe° Represent the file “farrago.txt”

and “outagain.txt”
as Java objects

* An example is the copying a file.

-

import java.io.*;
public class Copy {
public static void main(String[] args) /throws IOException

{

<}ileReader in = new FileReader(inputFile){)

int c;
while ((c = in.read()) != -1) . .
out.write(c); Wrap a FileWriter

in.close(); around
out.close();

} the output file

}
-)

13

Digression, Java Exceptions

* Exceptions are Java's way of dealing with error-
handling
* Why exceptions?
- Separates error handling code from “regular code”
- propagate errors
- group error types together and error differentiation
* Using Java lingo:

- exceptions are thrown when something out of the
ordinary happens

- exceptions can be caught in order to provide code for
error recovery or more informative error messages.

14

Java syntax for exceptions (throwing)

* Declare a method that throws exceptions

/;ublic class Stack({ h
public Object pop()(ghrows StackEmptyExceptid@ {
if (isEmpty())
throw new StackEmptyException(){)
else
return this.getFirstElement();
}
}
N J

* Java's throw statement takes an object instance of
type Throwable.

15

Java syntax for exceptions (try-catch)
* try-block allows you to execute code and in the case
of an exception, then that will be caught.

* catch-block will only execute once the exception has
been thrown.

~

public class Main{

public static void main(String[] args){
Stack s = new Stack();
try{
Object result = s.pop();
} catch (StackEmptyException empty){
System.out.println(empty.getMessage());
} catch (ArrayIndexOutOfBounds bounds){
System.out.println(bounds.getMessage());
}

}
_

16

Java Exceptions are Objects!

* Checked exceptions
Object will be enforced at compile
L’_) time. If you do not possible
{ Throwable i exceptions the compiler
complains

¢ Exception i
Errar |
;r) E - : | RuntimeException '

Java does not force you to deal with
these exceptions explicitly in your code

17

Java Exceptions

import java.io.¥*;
public class Copy {
public static void main(String[] args)
//throws IOException
{

File inputFile = new File("farrago.txt");

File outputFile = new File("outagain.txt");

FileReader in = new FileReader (inputFile);

FileWriter out = new FileWriter (outputFile);

int c;

while ((c = in.read()) != -1)
out.write(c);

in.close();

out.close();

}

* remove “throws” part

* Does not compile

- 1 n. read is defined to throw
an exception and this code
does not deal with it.

* You have to take care of
possible exceptions

- except runtime exceptions
°* You can

- propagate the exception up

- deal with it in your code

18

Java Exceptions. Pass it on.

import java.io.¥*;
public class Copy {

public static void main(String[] args)
throws IOException

{

File inputFile = new File("farrago.txt");

File outputFile = new File("outagain.txt");

FileReader in = new FileReader (inputFile);

FileWriter out = new FileWriter (outputFile);

int c;

while ((c = in.read()) != -1)
out.write(c);

in.close();

out.close();

}

Make sure that the whole
method propagates any
exception thrown in the

method body

— you are postponing error
handling by passing the
exception to the method that
called you.

In this case the JVM !

- simply prints out the
message that comes along
with the exception.

19

Java Exceptions. Deal with it now.

Try to execute this code

import java.io.*;

public class Copy {
public static void main(String args)

{
try{ If something went wrong, then 1t will

throw a known exception. Catch that
object and give 1t a name so that
it can be used 1n the catch block

Code that has access to the instance
of the exception thrown.
Deal with the exception accordingly

} lcateh (I0Bxception ioException){

(:System.out.println(ioException.getMessége()E)

}
}

Last note on 1/0O

* The copy application reads in a character at a time

- BufferedReader/BufferedWriter are provided for easier
manipulation

- Simply wrap them around your input/output stream

import java.io.*;
public class Copy {

public static void main(String[] args)
throws IOException

{

File inputFile = new File("farrago.txt");

FileReader in = new FileReader (inputFile);
BufferedReader bRead = new BufferedReader(in);

while (bRead.ready())
System.out.print (bRead.getLine());

in.close();

}

21

Getting information from the System

* Java allows you to view, add and alter system
properties

- these name, value pairs that hold system specific
information (i.e. execution path)

/in'port java. util.*;
I nport java.io.*;

public class Main {

public static void main(Strin
Properties nySystenProps =(System get Properties();

PrintStream pStream = @ew Print Strean(System out);)
mySystenProps. list(pStream;
Systemout.println("****");

Systemout.println("");

22

Executing System commands

* You can use Java to call system specific commands

- you can combine commands and process their output

/import java.util.*; R
I mport java.io.*;

public class Main {

public static void main(String[] args){

Runtinme runTinme = Runtine. get Runtinme();

try{
Process |Is = runTi ne. exec("ls");
I s. waitFor();
Systemout.println("Qutput fromls ...\n");
| nput Stream i Stream = | s. getl nput Strean() ;
| nput St r eanReader i SReader = new | nput St reanReader (i Stream ;
Buf f er edReader bf Reader = new BufferedReader (i SReader) ;
whi |l e (bf Reader.ready())

System out . pri nt (bf Reader. readLi ne()+"\n");

}catch (Exception exc){

exc. print StackTrace();

}
}

!

23

