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Recursion
● Recursive definition

– A recursive definition is one that uses the concept or 
thing that is being defined as part of of the definition.

● defining something at least partially in terms of itself

– e.g. 
● a directory is a part of a drive that can hold files and other 

directories.
● an ancestor is a parent or an ancestor of a parent
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Recursion (cont.)
● Recursive definition

– A recursive definition is one that uses the concept or 
thing that is being defined as part of of the definition.

● defining something at least partially in terms of itself

myRoot:Node

BTree

 

toString():String
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Recursion (cont.)
● Recursion as a programming technique

– A recursive subroutine is one that calls itself, either 
directly or indirectly

● a subroutine calls itself directly means that its definition 
contains a subroutine call statement that calls the 
subroutine that is being defined.

● a subroutine calls itself indirectly means that it calls a 
second subroutine which in turn calls the first subroutine

  public int fact(int n){ 
    if (n < 0) {
      System.out.println("Error:NO negatives");
      return 0; 
    }else if( n == 0 || n == 1) {
      return 1; 
    }else{ 
      return (n * fact(n-1));
    }
  }
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Recursion (cont.)
● Recursion as a programming technique

– A recursive subroutine is one that calls itself, either 
directly or indirectly

● a subroutine calls itself directly means that its definition 
contains a subroutine call statement that calls the 
subroutine that is being defined. public String toString(){

    if (left == null && right==null) {
      return myRoot.toString();
    }
    else if (left != null && right == null){
      return new String(left.toString()+myRoot.toString());
    }else if (left == null && right != null){

   return new String(myRoot.toSTring()+right.toString());
 }else {

      return new String(left.toString()+
 myRoot.toString()+
 right.toString());

    }
  } 

 This is not a 
recursive call. It 

refers to toString()
inside Node
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Recursive methods

● Base Case
– a case that is handled directly instead of calling the 

method definition again!
● in a binary tree, this is when a node has no children. 

base case

 public String toString(){
    if (left == null && right==null) {
      return myRoot.toString();
    }
    else if (left != null && right == null){
      return new String(left.toString()+myRoot.toString());
    }else if (left == null && right != null){

   return new String(myRoot.toSTring()+right.toString());
 }else {

      return new String(left.toString()+
 myRoot.toString()+
 right.toString());

    }
  } 
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Recursive methods

● Recursive cases
– calls the method again but on a different instance and 

possibly different arguments
● node with only one child and node with 2 children.

 public String toString(){
    if (left == null && right==null) {
      return myRoot.toString();
    }
    else if (left != null && right == null){
      return new String(left.toString()+myRoot.toString());
    }else if (left == null && right != null){

   return new String(myRoot.toSTring()+right.toString());
 }else {

      return new String(left.toString()+
 myRoot.toString()+
 right.toString());

    }
  } 
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Counting the number of nodes
● Create a method (NumberOfNodes()) that counts the 

number of nodes in a binary tree.
● Recipe

– what is the base case ? 
● when the whole tree is made up of one node !

– what is the recursive case
● any tree that has more than one node 



8

Counting the number of nodes (cont.)
● Recipe

– what is the base case ? 
● when the whole tree is made up of one node !

– what is the recursive case
● any tree that has more than one node 

  public int numberOfNodes(){
    int count = 0 ;
    if (left == null && right==null) {
      count++;
      return count;
    }
  }

B
a
s
e
 C

a
s
e



9

Counting the number of nodes (cont.)
  public int numberOfNodes(){
    int count = 0 ;
    if (left == null && right==null) {
      count++;
      return count;
    }else if (left != null && right == null){
      count++;
      return count += left.numberOfNodes();
    }else if (left == null && right != null){
      count++;
      return count += right.numberOfNodes();
    }else {
      count++;
      count += left.numberOfNodes();
      return  count += right.numberOfNodes();
    }

  }
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Complexity
● Evaluating execution of programs 

– time taken to complete computation

– space required to complete computation

● Time and space depend on the programs input !
– Worst case analysis

– Average case analysis

– Best case analysis

● Primitive operations do not all take the same 
amount of time to complete. 
– assume that all take exactly one unit of time to complete.
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Searching for an element

Searching involves determining if an element is a 
member of the collection.

• Simple/Linear Search:

– If there is no ordering in the data structure

– If the ordering is not applicable

• Binary Search:

– If the data is ordered or sorted

– Requires non-linear access to the elements
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Simple/Linear Search

• Best Case

– The element you are looking for is the first one in the 
collection.

• Worst Case

– The element you are looking for is the last one in the 
collection 

– The element is not in the collection.

• Average Case

– its not the first and not the last, somewhere in the middle. 
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Simple/Linear Search (example)

• Assume that we have a linked list that contains 
unordered integers. Is 10 in the list?

5 19 35 42 \\

• It will take:

– 4 comparisons

– 4 advance operations 

– total = 2 x 4.

• How much will it take if the list had 100 and '10' 
was not incluced. 1000 elements ? 
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Simple/Linear Search (example)
● For any list of size n 

– total = kn for some k. Written as O(n).

● The O() notation 
– Upper Bound.

– O(g(n)) = { f(n) : there exists a positive constant c and n
0
 

such that                                                            }0≤ f n ≤cg n  for all n ≥n 0

f n =O g n 

f n 

cg n 

n 0

n
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Binary Search

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

 7 12 42 59 71 86 104 212

Looking for 89
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Binary Search (cont.)

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

 7 12 42 59 71 86 104 212

Looking for 89
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Binary Search (cont.)

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

Looking for 89

 7 12 42 59 71 86 104 212
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Binary Search (cont.)

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

 7 12 42 59 71 86 104 212

89 not found – 3 comparisons
log(8) = 3
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Binary Search (cont.)

• An element can be found by comparing and cutting 
the work in half.

–We cut work in ½ each time

–How many times can we cut in half?

– log2N

• Thus binary search is O(log N).
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Insert into unsorted collections

• Inserting an element requires two steps:

– Find the right location

– Perform the instructions to insert

• If the collection in question is unsorted, then  O(1)

–  insert to the front 

–  insert to end (in the case of an array)

– There is no work to find the right spot and only constant 
work to actually insert.
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Insert into sorted collections

Finding the right spot is O(log N)

– Binary search on the element to insert

Performing the insertion 

– Shuffle the existing elements to make room for 
the new item
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Shuffling elements

5 12 35 77 101    

Insert 29

Move

• In the worst case, shuffle takes O(n)

– adding to the beginning of the list.
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Insert into sorted collections

Finding the right spot is O(log N)

– Binary search on the element to insert

Performing the insertion O(N)

– Shuffle the existing elements to make room for 
the new item

These are sequential steps, add their complexities

– Total = O(log N + N) = O(N)


