
1

Recursion
● Recursive definition

– A recursive definition is one that uses the concept or
thing that is being defined as part of of the definition.

● defining something at least partially in terms of itself

– e.g.
● a directory is a part of a drive that can hold files and other

directories.
● an ancestor is a parent or an ancestor of a parent

2

Recursion (cont.)
● Recursive definition

– A recursive definition is one that uses the concept or
thing that is being defined as part of of the definition.

● defining something at least partially in terms of itself

myRoot:Node

BTree

toString():String
left right

null null null null null null nullnullIn
s
ta

n
c
e

D
e
fi

n
it

io
n

3

Recursion (cont.)
● Recursion as a programming technique

– A recursive subroutine is one that calls itself, either
directly or indirectly

● a subroutine calls itself directly means that its definition
contains a subroutine call statement that calls the
subroutine that is being defined.

● a subroutine calls itself indirectly means that it calls a
second subroutine which in turn calls the first subroutine

 public int fact(int n){
 if (n < 0) {
 System.out.println("Error:NO negatives");
 return 0;
 }else if(n == 0 || n == 1) {
 return 1;
 }else{
 return (n * fact(n-1));
 }
 }

4

Recursion (cont.)
● Recursion as a programming technique

– A recursive subroutine is one that calls itself, either
directly or indirectly

● a subroutine calls itself directly means that its definition
contains a subroutine call statement that calls the
subroutine that is being defined. public String toString(){

 if (left == null && right==null) {
 return myRoot.toString();
 }
 else if (left != null && right == null){
 return new String(left.toString()+myRoot.toString());
 }else if (left == null && right != null){

 return new String(myRoot.toSTring()+right.toString());
 }else {

 return new String(left.toString()+
 myRoot.toString()+
 right.toString());

 }
 }

 This is not a
recursive call. It

refers to toString()
inside Node

5

Recursive methods

● Base Case
– a case that is handled directly instead of calling the

method definition again!
● in a binary tree, this is when a node has no children.

base case

 public String toString(){
 if (left == null && right==null) {
 return myRoot.toString();
 }
 else if (left != null && right == null){
 return new String(left.toString()+myRoot.toString());
 }else if (left == null && right != null){

 return new String(myRoot.toSTring()+right.toString());
 }else {

 return new String(left.toString()+
 myRoot.toString()+
 right.toString());

 }
 }

6

Recursive methods

● Recursive cases
– calls the method again but on a different instance and

possibly different arguments
● node with only one child and node with 2 children.

 public String toString(){
 if (left == null && right==null) {
 return myRoot.toString();
 }
 else if (left != null && right == null){
 return new String(left.toString()+myRoot.toString());
 }else if (left == null && right != null){

 return new String(myRoot.toSTring()+right.toString());
 }else {

 return new String(left.toString()+
 myRoot.toString()+
 right.toString());

 }
 }

re
cu

rs
iv

e
ca

se
s

7

Counting the number of nodes
● Create a method (NumberOfNodes()) that counts the

number of nodes in a binary tree.
● Recipe

– what is the base case ?
● when the whole tree is made up of one node !

– what is the recursive case
● any tree that has more than one node

8

Counting the number of nodes (cont.)
● Recipe

– what is the base case ?
● when the whole tree is made up of one node !

– what is the recursive case
● any tree that has more than one node

 public int numberOfNodes(){
 int count = 0 ;
 if (left == null && right==null) {
 count++;
 return count;
 }
 }

B
a
s
e
 C

a
s
e

9

Counting the number of nodes (cont.)
 public int numberOfNodes(){
 int count = 0 ;
 if (left == null && right==null) {
 count++;
 return count;
 }else if (left != null && right == null){
 count++;
 return count += left.numberOfNodes();
 }else if (left == null && right != null){
 count++;
 return count += right.numberOfNodes();
 }else {
 count++;
 count += left.numberOfNodes();
 return count += right.numberOfNodes();
 }

 }

10

Complexity
● Evaluating execution of programs

– time taken to complete computation

– space required to complete computation

● Time and space depend on the programs input !
– Worst case analysis

– Average case analysis

– Best case analysis

● Primitive operations do not all take the same
amount of time to complete.
– assume that all take exactly one unit of time to complete.

11

Searching for an element

Searching involves determining if an element is a
member of the collection.

• Simple/Linear Search:

– If there is no ordering in the data structure

– If the ordering is not applicable

• Binary Search:

– If the data is ordered or sorted

– Requires non-linear access to the elements

12

Simple/Linear Search

• Best Case

– The element you are looking for is the first one in the
collection.

• Worst Case

– The element you are looking for is the last one in the
collection

– The element is not in the collection.

• Average Case

– its not the first and not the last, somewhere in the middle.

13

Simple/Linear Search (example)

• Assume that we have a linked list that contains
unordered integers. Is 10 in the list?

5 19 35 42 \\

• It will take:

– 4 comparisons

– 4 advance operations

– total = 2 x 4.

• How much will it take if the list had 100 and '10'
was not incluced. 1000 elements ?

14

Simple/Linear Search (example)
● For any list of size n

– total = kn for some k. Written as O(n).

● The O() notation
– Upper Bound.

– O(g(n)) = { f(n) : there exists a positive constant c and n
0

such that }0≤ f n ≤cg n  for all n ≥n 0

f n =O g n 

f n 

cg n 

n 0

n

15

Binary Search

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

 7 12 42 59 71 86 104 212

Looking for 89

16

Binary Search (cont.)

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

 7 12 42 59 71 86 104 212

Looking for 89

17

Binary Search (cont.)

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

Looking for 89

 7 12 42 59 71 86 104 212

18

Binary Search (cont.)

• We may perform binary search on

– Sorted arrays

– Full and balanced binary search trees

• Tosses out ½ the elements at each comparison.

 7 12 42 59 71 86 104 212

89 not found – 3 comparisons
log(8) = 3

19

Binary Search (cont.)

• An element can be found by comparing and cutting
the work in half.

–We cut work in ½ each time

–How many times can we cut in half?

– log2N

• Thus binary search is O(log N).

20

Insert into unsorted collections

• Inserting an element requires two steps:

– Find the right location

– Perform the instructions to insert

• If the collection in question is unsorted, then O(1)

– insert to the front

– insert to end (in the case of an array)

– There is no work to find the right spot and only constant
work to actually insert.

21

Insert into sorted collections

Finding the right spot is O(log N)

– Binary search on the element to insert

Performing the insertion

– Shuffle the existing elements to make room for
the new item

22

Shuffling elements

5 12 35 77 101

Insert 29

Move

• In the worst case, shuffle takes O(n)

– adding to the beginning of the list.

23

Insert into sorted collections

Finding the right spot is O(log N)

– Binary search on the element to insert

Performing the insertion O(N)

– Shuffle the existing elements to make room for
the new item

These are sequential steps, add their complexities

– Total = O(log N + N) = O(N)

