
1

Inheritance, overloading and overriding
● Recall

– with inheritance the behavior and data associated with
the child classes are always an extension of the behavior
and data associated with the parent class

● In a child class you can
– redefine a method's implementation (override)

● a method that is inherited by the parent, and the child
class wants to change its behavior

– define new methods with the same method name but different
arguments (overload)

● different tasks are performed by each method but they
share the same method name

2

The Bank Account example
● Accounts must have

– current balance

– name of account holder

– a withdraw method

– a deposit method

● Current accounts
– have a maximum withdraw amount

● you cannot withdraw more than $200 in one transaction

● Savings accounts

– have a minimum balance that they need to maintain
at all times.

3

The Bank Account example
● Shared behavior and data between Savings and

Checking

– Data
● current balance
● name of account holder

– Behavior (method names and implementation)
● accessors for common data
● deposit

– Behavior (method names without behavior)
● withdraw
● display

Both types of accounts
have these methods

and they behave the same

Both types of accounts
have these methods

but each method behaves
differently in each

 account type

4

The Bank Account example
● Account is a generalized idea
● What actually exists in the banking model are

savings and checking accounts.

– both are accounts with specialized operations on
them. you can refer to them as accounts but you are
using them according what a savings and/or a
checking account can do.

● Generalized ideas (i.e. Account) can be directly
mapped in java as

– abstract classes
– interfaces.

5

The Bank Account with abstract classes
Account

double balance
String name

+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

abstract class

abstract methods

● Abstract classes cannot be instantiated

– there is no constructor !
● Abstract methods must be implemented by

subclasses of Account

– there is no body for withdraw and display inside
Account

6

The Bank Account with abstract classes

Account
double balance
String name

+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

Checking

Savings

 double minimumBalance

+getMinBal():double
+setMinBal(double):void

7

The Bank Account with abstract classes

Account
double balance
String name

+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

abstract public class Account {
 double balance;
 String name;

 public double getBalance(){
 return balance;
 }

 public void setBalance(double val){
 balance = val;
 }

 public String getName(){
 return name;
 }

 public void setName(String aName){
 name = aName;
 }

 public boolean deposit(double amount){
 balance = balance + amount;
 return true;
 }

 abstract public boolean withdraw(double amount);
 abstract public void display();
}

8

The Bank Account with abstract classes
Account

double balance
String name

+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

public class Checking extends Account{
 Checking(String name, double amount){
 this.name = name;
 if (amount > 0){
 this.balance = amount;
 } else {
 // error reporting code omitted
 this.balance = 0;
 }
 }
 public boolean withdraw(double amount){
 if (amount > 0 && amount <= balance) {
 balance = balance - amount;
 return true;
 } else if (amount > balance){

 // error reporting code omitted
 return false;
 } else {
 // error reporting code omitted
 return false;
 }
 }
 public void display(){
 System.out.println(" ****** Current Account Details

 ****** ");
 System.out.println(" Name: "+ this.getName());
 System.out.println(" Current Balance: "+

 this.getBalance());
 System.out.println("\t\t\t\t ****** Current Account

 Details ****** ");
 }
}

Checking

9

The Bank Account with abstract classes
Account

double balance
String name

+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

public class Savings extends Account{
 double minimumBalance;
 Savings(String name, double amount, double minBalance){
 this.name = name;
 if (amount > 0){
 this.balance = amount;
 } else {
 // error reporting code omitted
 this.balance = 0;
 }
 if (minBalance > 0){
 this.minimumBalance = minBalance;
 } else {
 // error reporting code omitted
 this.minimumBalance = 0;
 }
 }
 public void setMinBal(double newBal){
 minimumBalance = newBal;
 }

 public double getMinBal(){
 return minimumBalance;
 }

 public boolean withdraw(double amount){
 //code omitted
 }
 public void display(){
 //code omitted
 }
}

Savings

 double minimumBalance

+getMinBal():double
+setMinBal(double):void

10

Overloading the constructor
public class Savings extends Account{
 double minimumBalance;

 Savings(String name, double amount, double minBalance){
 this.name = name;
 if (amount > 0){
 this.balance = amount;
 } else {
 // error reporting code omitted
 this.balance = 0;
 }
 if (minBalance > 0){
 this.minimumBalance = minBalance;
 } else {
 // error reporting code omitted
 this.minimumBalance = 0;
 }
 }

 Savings(String name, double amount){
 this.name = name;
 if (amount > 0){
 this.balance = amount;
 } else {
 this.balance = 0;
 }
 this.minimumBalance = 0;
 }

}

Distinguish the
constructor by number
of arguments and types
for each argument.

11

Overloading the constructor

public class Main{

 public static void main(String[] args){
 Savings mySavings =

new Savings(“John”,100.00,50.00);
 Savings anotherSavings =

new Savings(“Mary”,200.00);
 }
}

public class Savings extends Account{
 double minimumBalance;

 Savings(String name, double amount,
double minBalance){

 this.name = name;
 if (amount > 0){
 this.balance = amount;
 } else {
 // error reporting code omitted
 this.balance = 0;
 }
 if (minBalance > 0){
 this.minimumBalance = minBalance;
 } else {
 // error reporting code omitted
 this.minimumBalance = 0;
 }
 }

 Savings(String name, double amount){
 this.name = name;
 if (amount > 0){
 this.balance = amount;
 } else {
 this.balance = 0;
 }
 this.minimumBalance = 0;
 }

}

12

Overloading a method

public class Main{

 public static void main(String[] args){
 Savings mySavings =

new Savings(“John”,100.00,50.00);
 Savings anotherSavings =

new Savings(“Mary”,200.00);

 mySavings.display();
 mySavings.display(“Today”);
 }
}

public class Savings extends Account{
 double minimumBalance;

 public void display(){
 System.out.println("\n ******

Savings Account Details ****** ");
 System.out.println(" Name: "+

 this.getName());
 System.out.println(" Current Balance: "+

 this.getBalance());
 System.out.println(" Minimum Balance: "+

 this.getMinBal());
 System.out.println("\t\t\t\t ******

Savings Account Details ******\n ");
 }

 public void display(String date){
 System.out.println(date+”your balance

is “+this.getBalance());
 }

}

13

Bank account with interfaces only!
● Interfaces in java define sets of operations that the

type must implement. <<IAccount>>
+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

Checking

Savings

double minimumBalance
double balance
String name

+getMinBal():double
+setMinBal(double):void

double balance
String name

14

Bank account with interfaces only!

<<IAccount>>
+getBalance():double
+getName():String
+setName(String):void
+setBalance(double):void
+deposit(double):boolean
+withdraw(double):boolean
+display()

interface IAccount {

 public double getBalance();
 public String getName();
 public void setName(String aName);
 public void setBalance(double amount);
 public boolean deposit(double amount);
 public boolean withdraw(double amount);
 public void display();
}

● There is no implementation inside interfaces !

15

Bank account with interfaces only!

Savings

double minimumBalance
double balance
String name

+getMinBal():double
+setMinBal(double):void

public class Savings implements IAccount{
 double minimumBalance;
 double balance;
 String name;

// Same as Slide 7
 public double getBalance(){ }
 public void setBalance(double val){ }
 public String getName(){ }
 public void setName(String aName){ }
 public boolean deposit(double amount){ }

// Same as Slide 9
 Savings(String name, double amount){ }
 Savings(String name, double amount,

double minBalance){ }
 public void setMinBal(double newBal){ }
 public double getMinBal(){ }
 public boolean withdraw(double amount){ }
 public void display(){ }

}

16

Bank account with interfaces only!

Checking

double balance
String name

public class Checking implements IAccount{
 double minimumBalance;
 double balance;
 String name;

// Same as Slide 7
 public double getBalance(){ }
 public void setBalance(double val){ }
 public String getName(){ }
 public void setName(String aName){ }
 public boolean deposit(double amount){ }

// Same as Slide 8
 public boolean withdraw(double amount){ }
 public void display(){ }

}

17

Interfaces or Abstract classes
● Java allows you to implement as many interfaces as

you like
– you can only extend one abstract class not more !

● Abstract classes can also contain state (instance
variables) and implemented methods
– interfaces cannot have instance variables (they can have

static variables) and cannot have implementations for
methods

18

Interfaces or Abstract classes (cont)
● Both define a type

– with abstract classes you can also share implementation
and enforce method signatures to be implemented later

– with interfaces you can only enforce method signatures
that need to be implemented later

– A class can implement multiple interfaces but extend
only one class (concrete or abstract)

19

Types Revisited
● In Java each interface defines a type. Interface

extension and implementation as subtype
relationships

● A subtype relation in Java is:

– if class C
1
 extends class C

2
 then C

1
 is a subtype of C

2

– if interface I
1
 extends I then I

1
 is a subtype of I

– if class C implements interface I then C is a subtype of I

– for every interface I, I is a subtype of Object

– for every type T , T[] is a subtype of Object

– if T
1
 is a subtype of T

2
 then T

1
[] is a subtype of T

2
[]

20

Upcasting
● Operation that changes the runtime type of an

instance to one of its supertypes (i.e. move up the
hierarchy)
– force an instance that is of type Savings Account to be

viewed as of type Account.

public class Main{

 public static void main(String[] args){
 Savings mySavings = new Savings(“John”,100.00,50.00);
 Savings anotherSavings = new Savings(“Mary”,200.00);
 Checking cAccount = new Checking(“Michael”, 89.00);
 mySavings.display();
 mySavings.display(“Today”);

 Account oneAC = (Account) mySavings;
 Account secondAC= (Account) cAccount;
 Account[] allAccounts = new Account[10];
 allAccounts[0] = oneAC;
 allAccounts[1] = secondAC;
 }
}

Force mySavings
to be used as of type

 Account

21

Downcasting
● Operation that changes the runtime type of an

instance to one of its supertypes (i.e. move down
the hierarchy)
– force an instance that is of type Account to be viewed as

of type Savings Account.
public class Main{

 public static void main(String[] args){
 Savings mySavings = new Savings(“John”,100.00,50.00);
 Savings anotherSavings = new Savings(“Mary”,200.00);
 Checking cAccount = new Checking(“Michael”, 89.00);
 mySavings.display();
 mySavings.display(“Today”);

 Account oneAC = (Account) mySavings;
 Account secondAC= (Account) cAccount;
 Account[] allAccounts = new Account[10];
 allAccounts[0] = oneAC;
 allAccounts[1] = secondAC;

 Savings saveAcc = (Savings) allAccounts[0];
 Savings saveAcc2 = (Savings) allAccounts[1];
 }
}

Force the first element
of the array that is of
type Account to be

used as of type Savings

The second element in the list
is an instance of Checking
Account, stored as of type

 Account. Casting it to
Savings is wrong!

