
1

The Vector Collection
● java.util.vector

– much like an array however vector is expandable

– extra high-level operations make vector very flexible in
use

– vector can hold any subtype of Object.

● Operations
– size() , capacity() - returns the number of elements in the

collection

– isEmpty()

– setSize(int) – set the size, trancuting or expanding as
necessary

2

Using Vector as a Stack
● Recall stack operations

– push(Object), pop():Object, peek():Object, empty()

● Using a vector
– myVector.addElement(Object) push(Object)

– myVector.lastElement() peek()

– myVector.removeElementAt(myVector.size() -1) pop():
Object

3

Using Vector as a Queue
● Queues allow the addition of elements on one end

and the removal of elements from the other (FIFO)
– push(Object), pop():Object, peek():Object

● Using a vector
– myVector.addElement(Object) push(Object)

– myVector.firstElement() peek()

– myVector.removeElementAt(0) pop():Object

4

Using Vector as a Set
● A Set is a data structure that can hold an unordered

set of values
– add(Object), remove(Object), contains(Object):boolean

● Using a vector
– myVector.addElement(Object) add(Object)

– myVector.contains(Object) contains(Object):boolean

– myVector.removeElement(Object) remove(Object)

5

Using Vector as a List
● A List allows the addition, removal and retrieval of

elements at any location. Also the ability to find the
location of an element
– first(), last(),addFirst(Object), addLast(Object), contains

(Object):boolean, removeFirst(), removeLast(), indexOf
(Object):int, remove(int)

● Using a vector
– myVector.firstElement() first()

– myVector.lastElement() last()

– myVector.indexOf(Object) indexOf(Object)

– myVectore.removeElementAt(index) remove(index)

6

HashMap
● A collection values, each mapped to a key

a

b

hello

apple

ball

hi

Keys Values

7

HashMap
● Keys have to be distinct!
● Values do not have to be distinct !

a

b

hello

apple

apple

hi

Keys Collections

8

HashMap
● In Java both keys and values can be of type Object

● You can create interesting data structure !

a

b

hello

apple alter Andy and

ball bear bat bomb

hi
what's

up hey hola!

Keys Collections

Lists of Objects
as values

9

HashMap
● Operations on HashMaps

– containsKey(Object):boolean, containsValue(Object):
boolean, put(Object, Object):Object.

a

b

hello

apple alter Andy and

ball bear bat bomb

hi
what's

up hey hola!

Keys Collections

LinkedList aList = new LinkedList();
aList.add(“apple”);
aList.add(“alter”);
aList.add(“Andy”);
aList.add(“and”);
// initialize bList and helloList
HashMap hMap = new HashMap();
hMap.put(“a”, aList);
hMap.put(“b”, bList);
hMap.put(“hello”, helloList);

10

Trees
● Extensively used data structure
● A set of nodes (N) and edges (E).

– A tree grows downwards

Node

EdgeRoot

Children

Leaf nodes

11

Examples of Trees
● Binary Tree:

– each node has at most 2
children

● N-ary trees:
– each node has at most n

number of children

12

Designing a binary tree
● Need to represent

– nodes

– edges

– the whole tree

● Nodes
– take at most 2 children

that are themselves
nodes.

– We can also store some
information on each node
i.e. Root, Leaf, Color etcIs a single node

a Tree?

These are also
Trees !!!

13

Designing a binary tree
● Everything is a Tree and

a Tree can be
– empty

– one node

– one node with one child
(left or right)

– one node and 2 children

● And each child is a
TREE !!!!

Is a single node
a Tree?

These are also
Trees !!!

14

Designing a binary tree
● Everything is a Tree and

a Tree can be
– empty

– one node

– one node with one child
(left or right)

– one node and 2 children

● And each child is a
TREE !!!!

Node

int value

BTree

Node n
BTree left
BTree right

+toString():String

toString():String

15

Diagram notation

Node

int value

BTree

Node n
BTree left
BTree right

+toString():String

toString():String

Node

int value
BTree

+toString():String

toString():String

myRoot

left right

16

Designing a binary tree

Node

int value
BTree

BTree left
BTree right

+toString():String

toString():String

myRoot

left right

public class Node {
 int value;

 Node(int newVal){
 this.value = newVal;
 }

 public String toString(){
 return new String("NODE:
"+value +"\n");
 }
}

17

Designing a binary tree

Node

int value
BTree

BTree left
BTree right

+toString():String

toString():String

myRoot

left right

public class BTree {
 Node myRoot;
 BTree left;
 BTree right;

 BTree(Node n) {
 this.myRoot = n;
 this.left = null;
 this.right = null;
 }

 BTree(Node n, BTree left){
 this.myRoot = n;
 this.left = left;
 this.right = null;
 }

 BTree(Node n, BTree left,

 BTree right){
 this.myRoot = n;
 this.left = left;
 this.right = right;
 }

18

Printing back the Tree
● Flatten

– walk the tree and print the values on each node.

– Order
● left subtree
● node
● right subtree

3

1 5

4 620

flatten 0 1 2 3 4 5 6

