
1

Java Interfaces

● Interfaces declare features(i.e. methods) but provide no
implementation

● classes that implement an interface must provide an
implementation for each feature

● Interfaces can inherit from another interface

– at most one superinterface

● A Java class can implement more than one interface

– Java inherits(extends) from at most one type, but can
implement more than one interface.

2

Java Interfaces (cont)

● Printable defines 3
methods

● Displayable inherits from
Printable and adds some
more method signatures

● A class that implements
Displayable will have to
provide an
implementation for all 6
methods.

interface Printable {
 public String printInstVar();

 public String showInfo();

 public String printWithSpaces();
}

interface Displayable extends
Printable {

 public String display();

 public String refresh();

 public void displayColor(Color c);
}

3

Java Interfaces (cont)

● keyword implements
followed by a list of one
or more comma separated
interface names

● Method signatures must
match

– same modifiers

– same method names

– same number of arguments

– corresponding argument
types.

public class Circle implements
Displayable {

 private int radius;
 public String printInstVar(){
 System.out.println(“Radius “

+radius);
 }
 public String showInfo(){
 System.out.println(“ I am a
 Triangle with radius “
 + radius);
 }
 public String printWithSpaces(){
 ...
 }
 public String display(){
 ...
 }
 public String refresh(){
 ...
 }
 public void displayColor(Color c){
 ...
 }
}

4

Types Revisited

● In Java each interface defines a type. Interface extension
and implementation as subtype relationships

● A subtype relation in Java is:

– if class C
1
 extends class C

2
 then C

1
 is a subtype of C

2

– if interface I
1
 extends I then I is a subtype of I

– if class C implements interface I then C is a subtype of I

– for every interface I, I is a subtype of Object

– for every type T , T[] is a subtype of Object

– if T
1
 is a subtype of T

2
 then T

1
[] is a subtype of T

2
[]

5

Types of Circle

● Circle is a subtype of

– Object

– Displayable

– Printable

public class Circle implements
Displayable {

 private int radius;
 public String printInstVar(){
 System.out.println(“Radius “

+radius);
 }
 public String showInfo(){
 System.out.println(“ I am a
 Triangle with radius “+ radius);
 }
 public String printWithSpaces(){
 ...
 }
 public String display(){
 ...
 }
 public String refresh(){
 ...
 }
 public void displayColor(Color c){
 ...
 }
}

6

Inheritance and its forms

● Combination

– child class inherits features from more than one parent
● Java does not directly support this last form, although we

can simulate it (more on this next time)

● Using interfaces a class can inherit features from more
that one parent.

– parents do not have to be in an direct inheritance relationship

7

Students, TAs and Professors

● Modeling a department with

– students

– TA

– professors

● Students

– gpa, full-time or part-time, courses

● TA

– is a student, office hours, course TAing for and professor

● Professors

– office hours, teaching courses, TA for each one

8

Students, TAs and Professors (cont)

● The goal is not only to correctly implement but to also
capture each concept separately.

– design is equally important

Student TA Prof

teaching course
assigned TA/Prof
office hours

full-time, part-time
GPA

9

Students, TAs and Professors (cont)

● Doing this only with Classes and inheritance

– TA to inherit from Student and Prof,
● impossible in Java

– Can make Prof and Student inherit from TA
● exposes unused methods inside Prof and TA

– Use inheritance for construction
● keep inside TA an instance of Student and Prof

– lose substitutability (less flexible design)

● Let's try interfaces

– define a interface for each role(TA, Prof, Student) that
enforces each role's features

10

Students, TAs and Professors (cont)

Person <<Personify>>

<<Student>><<Teaching>>

<<Professor>><<TA>>

StudentImpl ProfessorImpl

TAImpl

11

Students, TAs and Professors (cont)

● Declare a type Personify as a Java interface type holding
features shared by all

● Declare an abstract class Person that implements these
common features

● For each role, define a corresponding interface

– abstract away common behavior (i.e. Teaching)

● Create implementation classes for each of the roles

– a student implements the Student Interface

– a TA implements the TA Interface

– a Professor implements the Professor Interface

● Check the source code on the class web page.

12

Dynamic Data Structures

● Data Structures that have the ability to dynamically alter
some of their properties like

– e.g. size

● Some examples

– LinkedList, Queues, Trees, HashTables

– standard implementations are available in the standard Java
library classes. Most of them under java.util

● We will examine some of these

13

LinkedList

● a collection of locations with references from one cell to
the next

● SingleLinkedList

DoublyLinkedList

14

LinkedList (Java)

● Rich set of operations

– add
● at a specific index, begging, end

– size

– remove
● an Object, first, last, at a specific index

● Return methods give you back an instance of type Object

15

LinkedList (Java) and Iterators

● Java provides a convenient way to go through an list, an
iterator

● iterator() - returns an instance of an iterator initialized to
point to the first element of the list.

● iterators can alter the underlying list elements !

 LinkedList myList = new LinkedList();
 myList.add("The");
 myList.add("quick");
 myList.add("brown");
 myList.add("fox");
 Iterator it = myList.iterator();
 while(it.hasNext()){
 System.out.print((String)it.next());
 System.out.print(" ");
 }
 System.out.println("!");

16

Stack

● LIFO stack of objects

● Operations

– push(Object) – place
something on the top of the
stack

d

c

b

a

push(a);
push(b);
push(c);
push(d);

17

Stack (cont)

● LIFO stack of objects

● Operations

– push(Object) – place
something on the top of the
stack

– pop():Object – remove the
first element of the stack

c

b

a
pop();

d

18

Stack (cont)

● LIFO stack of objects

● Operations

– push(Object) – place
something on the top of the
stack

– pop():Object – remove the
first element of the stack

– peek():Object – look at the
first element without
removing it

c

b

a

c

peek();

19

Stack (cont)

● LIFO stack of objects

● Operations

– push(Object) – place
something on the top of the
stack

– pop():Object – remove the
first element of the stack

– peek():Object – look at the
first element without
removing it

– empty():boolean – check to
see if the stack is empty

c

b

a

