Inheritance (an intuitive description)

* Recall the Orange class

- properties found in Orange are also shared with other
Fruits (e.g. Apple, Banana, Pineapple)

* We associate behavior as well as state with with
more abstract notions (e.g. Fruit). Oranges are a
specialization of that abstraction.

* In OO programming inheritance is a relationship
between entities referred to as parents and children
where

— the behavior and data associated with the child classes are
always an extension of the properties associated with parent
classes.

Inheritance (an intuitive description)

A child class

- will be given all the properties of the parent class
- may in addition define new properties of its own

- may redefine some of the properties of the parent class to

e constrain

e override

e Inheritance is transitive

- if we have Dog inherits from Mammal and Mammal
inherits from Animal then Dog has behavior defined in
both Animal and Mammal

Inheritance in Java (the Object class)

* The “mother” of all classes in Java is the Object.

public class Orange { public class Orange extends (bject {
} }

* ext ends in Java defines an inheritance
relationship between Object (parent) and Orange

(child)

* Every Java class inherits from Object

* Java classes can have

- at most one parent class

— zero or more child classes

Inheritance diagrammatically

* Use an empty headed arrow, arrow points to parent
class

N
<Parent> Object

A\ A\
<Child> Orange

Inheritance and terminology

* Superclass

- refers to the parent class from which code is inherited

* Subclass
— refers to the child class that code was inherited to.
I
<Superclass>
A

<Subclass>

Inheritance and its forms

* Specialization

- child class is a special case of the parent class; the child is

a subtype.
* Specification

- parent class defines behavior that is implemented in the
child class

e Construction

- child class makes use of the behavior found in the parent
class but the child is not a subtype

e Extension

- child class adds new functionality and does not change
the inherited behavior

Inheritance and its forms (cont)

e [1mitation

- child class restricts the usage of some of the behavior
found in the parent class

e Combination

- child class inherits features from more than one parent

* Java does not directly support this last form, although we
can simulate it (more on this next time)

* Address each form separately with examples in
Java.

Specialization

* child class is a special case of the parent class; the
child is a subtype.

a I
* same behavior as Orange
Orange
— extra instance variable
A

— extra constructor method
SheltOrange e All other instance methods are
-shelfLife:int inherited from Orange

ShelfOrange(int,int,int)

Specialization (cont)

* super isJava

keyword and denotes N

h 1 . public class Shel f Orange extends O ange{

the superclass (i.e. int lifetime:

Orange) constructor Shel fOrange(_i nt ne\{\}\/\éi ght, I nt newPri ce,
int nylifetine){

method super (newPri ce, neweéi ght);

this.lifetinme = nylifetine;
e super canbeusedto =
call methods defined

in the superclass

- e.g. super.showlInfo()

Type, subtype and supertype

* Subtype

- Type Sis a subtype of type T if an instance of type S can be
substituted for an instance of type Twith no observable effect.

e This means

- an instance of S can understand the same messages as an
instance of T

* for any method in T, there is a corresponding method in S with
the same name, same number of arguments and same types
for each argument.

— S can have more method definitions but not less.

- T is the supertype of S.

10

Type, subtype and supertype (cont)

-
1. public class Main {

2. public static void main(String[] args){

3. Oange sinpleOange = new Orange(2, 3);

4. Shel f Orange shel f Orange = new Shel f Orange(4, 5, 3);

5.

6. sinpleOange. show nfo();

7. shel f Orange. show nfo();

8. [/casting forces shel fOrange to be mani pul ated as an O ange
9. Oange pretender = (Orange)shel f Orange;

10. shel f Orange. show nf o();

11. //this still works, the nessage is understood

12. //and the sane info as line 7 is displayed.

13. }

14. }

-

11

Type, subtype and supertype

* Widening and Narrowing

— Conversion of a subtype to one of its supertypes is called
widening

— Conwversion of a supertype to one of its subtypes is called
narrowing

* Rule of assignment

— The type of the expression at the right-hand side of an
assignment must be a subtype of the type of the variable at the
left-hand side of the assignment.

- e.g. Orange pretender = new Shel f Orange(2, 3, 4)

12

Specification

Parent class defines behavior that is implemented in the
child class

There are two ways that you can impose this on Java
programs

— abstract classes

— interfaces
Abstract classes

— cannot be instantiated
- contain instance variables, instance methods etc.

- methods can be declared abstract

* their implementation is deferred and has to be defined by
subclasses

13

Specification (cont)

Fruit

Orange

A

ShelfOrange

-shelfLife:int

ShelfOrange(int,int,int)

~

[

}

-
N\

‘abstract class Fruit]

int weight;
I nt price;

public void set Wi ght(int anlnt){
wei ght = anl nt;

}

public void setPrice(int anlnt){
price = anlnt;

}

public int getWight(){
return wei ght ;

}

public int getPrice(){
return price;

}

ébstraéiti)publ ic void prettyPrint();

Specification (cont)

e No constructor

e prettyPrint() is
defined to be abstract
and no
implementation is
provided in Fr ui t

‘abstract class Fruit{

int weight;
I nt price;

public void set Wi ght(int anlnt){
wei ght = anl nt;

}

public void setPrice(int anlnt){
price = anlnt;

}

public int getWight(){
return wei ght ;

}
public int getPrice()({

return price;
}
(:ébst racjﬁf)publ ic void prettyPrint();

} _

o

15

Specification (cont)

4 N O
public class Orange extends Fruit{
Fruit _ _ _ _
Orange(int aweight, int aprice){
this.price = aprice;
i t hi s. wei ght = awei ght;

}
/MVOid prettyPrint(){

Orange (Systemout.println(" This is >

an Orange of weight "+wei ght+"

N and Price "+ price);/
A }N\

SheltOrange
_shelfLife:int Orange has to provide an implementation for
prettyPrint (). The method signature must
ShelfOrange(int,int,int) be identical to the one found 1n Fr ui t
_ /

16

Construction

e child class makes use of the behavior found in the
parent class but the child is not a subtype

* typically used to simplify implementation

* the two classes might be completely unrelated
concepts

RTriangle

-rSide:1int
-ISide:int
-hypo:double

Square

/\

+getArea():double

+getPerimeter():double Square(int)

Construction (cont)

-

~

public class RTriangl e{
private int rSide;
private int |Side;
private doubl e hypo;

RTriangl e(int sideA, int sideB,
doubl e si deC) {

this.rSide = sideA
this.| Side = sideB;
this. hypo = si deC,

}

publ i c doubl e get Area()

{
return (rSide*l Side)/2.0;

-

public class Square extends
RTri angl e{

Square(i nt sideA){
super (si deA, si deA,
Mat h. sqrt (2*(si deA*si deA)));
}

publ i ¢ doubl e get Area() {
return 2*super.getArea();
}

publ i ¢ doubl e getPerineter(){
return (2*super.getPerineter())

} \ - (2*getHypo());
publ i c doubl e getPerineter(){ }
return rSide+l Si de+hypo;
}
}
- AN

18

Construction (cont)

* Instances of Squar e cannot be substituted freely
with instances of RTr i angl e

* The usage of Rtriangle is merely for making
implementation easy since we can reuse code that is
already there and tested.

* This usage of inheritance is sometimes frowned
upon since it breaks substitutability.

19

Extension

* child class adds new functionality and does not
change the inherited behavior

Orange

A

ShelfOrange

-shelfLife:int

ShelfOrange(int,int,int)
+showInfo():void
+getShelfLife():1nt
+setShelfLife(int):void

~

public class Shel f Orange extends O ange{
int lifetine;
Shel f Orange(i nt newWi ght, int newPrice,
int nylifetinme){
super (newPri ce, newéi ght) ;
this.lifetime = nylifetine;

}
public void show nfo(int noO Ti nmes){
for (int i =0 ; i < noOFTines;i++){
prettyPrint();
}
}

public void setLifetine(int newLifetinme){
lifetime = newLifetine;

}

public int getLifetine(){
return lifetine;

}

J

20

Limitation
* child class restricts the usage of some of the

behavior found in the parent class

- e.g remove the ability to call setter methods in Orange

e An inherited method can be redefined or overridden
in a subclass definition.

-~

public class Fi xedOrange extends O ange{

}

//overrides setters
public void setPrice(){
System out. println(“Fi xedOrange does not allow setters”);

}
public void setWight(){

Systemout. println(“Fi xedOrange does not allow setters”);
}

21

Overriding

e In order to override a method in a subclass

— the method name must be the same

- the number of arguments and their corresponding types
must be the same

— the method modifiers must be he same

~

public class Fi xedOrange extends O ange{

//overrides setters
public void setPrice(){
System out. println(“Fi xedOrange does not allow setters”);

}
public void setWight(){

System out. println(*Fi xedOrange does not allow setters”);
}
}

22

Overloading

* Overloading uses the same method name but
different arguments

- e.g. different number of arguments, different types

public class Fi xedOrange extends O ange{

[/ overrides setters
public void setPrice(){

System out. println(“Fi xedOrange does not allow setters”);
}

public void setWight(){
System out. printl n(“Fi xedOrange does not allow setters”);
}

[/ overl oad prettyPrint
public void prettyPrint(int noO Ti nes){
for (int i =0 ; i < noOFTines;i++){
prettyPrint();
}
}
}

o

23

