
1

Inheritance (an intuitive description)
● Recall the Orange class

– properties found in Orange are also shared with other
Fruits (e.g. Apple, Banana, Pineapple)

● We associate behavior as well as state with with
more abstract notions (e.g. Fruit). Oranges are a
specialization of that abstraction.

● In OO programming inheritance is a relationship
between entities referred to as parents and children
where
– the behavior and data associated with the child classes are

always an extension of the properties associated with parent
classes.

2

Inheritance (an intuitive description)
● A child class

– will be given all the properties of the parent class

– may in addition define new properties of its own

– may redefine some of the properties of the parent class to
● constrain
● override

● Inheritance is transitive
– if we have Dog inherits from Mammal and Mammal

inherits from Animal then Dog has behavior defined in
both Animal and Mammal

3

Inheritance in Java (the Object class)
● The “mother” of all classes in Java is the Object.

public class Orange {
...

}
=

public class Orange extends Object {
...

}

● extends in Java defines an inheritance
relationship between Object (parent) and Orange
(child)

● Every Java class inherits from Object
● Java classes can have

– at most one parent class

– zero or more child classes

4

Inheritance diagrammatically
● Use an empty headed arrow, arrow points to parent

class

<Parent>

<Child>

Object

Orange

5

Inheritance and terminology
● Superclass

– refers to the parent class from which code is inherited

● Subclass
– refers to the child class that code was inherited to.

<Superclass>

<Subclass>

6

Inheritance and its forms
● Specialization

– child class is a special case of the parent class; the child is
a subtype.

● Specification
– parent class defines behavior that is implemented in the

child class

● Construction
– child class makes use of the behavior found in the parent

class but the child is not a subtype

● Extension
– child class adds new functionality and does not change

the inherited behavior

7

Inheritance and its forms (cont)
● Limitation

– child class restricts the usage of some of the behavior
found in the parent class

● Combination
– child class inherits features from more than one parent

● Java does not directly support this last form, although we
can simulate it (more on this next time)

● Address each form separately with examples in
Java.

8

Specialization
● child class is a special case of the parent class; the

child is a subtype.

Orange

ShelfOrange

-shelfLife:int

ShelfOrange(int,int,int)

● same behavior as Orange

– extra instance variable

– extra constructor method

● All other instance methods are
inherited from Orange

9

Specialization (cont)

public class ShelfOrange extends Orange{
 int lifetime;
 ShelfOrange(int newWeight, int newPrice,

int mylifetime){
 super(newPrice, newWeight);
 this.lifetime = mylifetime;
 }

● super is Java
keyword and denotes
the superclass (i.e.
Orange) constructor
method

● super can be used to
call methods defined
in the superclass
– e.g. super.showInfo()

10

Type, subtype and supertype
● Subtype

– Type is a subtype of type if an instance of type can be
substituted for an instance of type with no observable effect.

● This means
– an instance of S can understand the same messages as an

instance of T
● for any method in T, there is a corresponding method in S with

the same name, same number of arguments and same types
for each argument.

– S can have more method definitions but not less.

– T is the supertype of S.

S T S
T

11

Type, subtype and supertype (cont)

1.public class Main {
2. public static void main(String[] args){
3. Orange simpleOrange = new Orange(2,3);
4. ShelfOrange shelfOrange = new ShelfOrange(4,5,3);
5.
6. simpleOrange.showInfo();
7. shelfOrange.showInfo();
8. //casting forces shelfOrange to be manipulated as an Orange
9. Orange pretender = (Orange)shelfOrange;
10. shelfOrange.showInfo();
11. //this still works, the message is understood
12. //and the same info as line 7 is displayed.
13. }
14. }

12

Type, subtype and supertype
● Widening and Narrowing

– Conversion of a subtype to one of its supertypes is called
widening

– Conversion of a supertype to one of its subtypes is called
narrowing

● Rule of assignment
– The type of the expression at the right-hand side of an

assignment must be a subtype of the type of the variable at the
left-hand side of the assignment.

– e.g. Orange pretender = new ShelfOrange(2,3,4)

13

Specification
● Parent class defines behavior that is implemented in the

child class
● There are two ways that you can impose this on Java

programs

– abstract classes

– interfaces

● Abstract classes
– cannot be instantiated

– contain instance variables, instance methods etc.

– methods can be declared abstract
● their implementation is deferred and has to be defined by

subclasses

14

Specification (cont)

Fruit

Orange

ShelfOrange

-shelfLife:int

ShelfOrange(int,int,int)

abstract class Fruit{
 int weight;
 int price;

 public void setWeight(int anInt){
 weight = anInt;
 }
 public void setPrice(int anInt){
 price = anInt;
 }
 public int getWeight(){
 return weight ;
 }
 public int getPrice(){
 return price;
 }

 abstract public void prettyPrint();
}

15

Specification (cont)

abstract class Fruit{
 int weight;
 int price;

 public void setWeight(int anInt){
 weight = anInt;
 }
 public void setPrice(int anInt){
 price = anInt;
 }
 public int getWeight(){
 return weight ;
 }
 public int getPrice(){
 return price;
 }

 abstract public void prettyPrint();
}

● No constructor

● prettyPrint() is
defined to be abstract
and no
implementation is
provided in Fruit

16

Specification (cont)

Fruit

Orange

ShelfOrange

-shelfLife:int

ShelfOrange(int,int,int)

public class Orange extends Fruit{

 Orange(int aweight, int aprice){
 this.price = aprice;
 this.weight = aweight;
 }

 public void prettyPrint(){
 System.out.println(" This is
 an Orange of weight "+weight+"
 and Price "+ price);
 }
}

Orange has to provide an implementation for
prettyPrint(). The method signature must

be identical to the one found in Fruit

17

Construction
● child class makes use of the behavior found in the

parent class but the child is not a subtype
● typically used to simplify implementation
● the two classes might be completely unrelated

concepts

RTriangle

Square

Square(int)

-rSide:int
-lSide:int
-hypo:double

+getArea():double
+getPerimeter():double

18

Construction (cont)

public class RTriangle{
 private int rSide;
 private int lSide;
 private double hypo;

 RTriangle(int sideA, int sideB,
 double sideC){

 this.rSide = sideA;
 this.lSide = sideB;
 this.hypo = sideC;
 }

 public double getArea(){
 return (rSide*lSide)/2.0;
 }

 public double getPerimeter(){
 return rSide+lSide+hypo;
 }
}

public class Square extends
RTriangle{

 Square(int sideA){
 super(sideA,sideA,

Math.sqrt(2*(sideA*sideA)));
 }

 public double getArea(){
 return 2*super.getArea();
 }

 public double getPerimeter(){
 return (2*super.getPerimeter())

- (2*getHypo());
 }
}

19

Construction (cont)
● Instances of Square cannot be substituted freely

with instances of RTriangle

● The usage of Rtriangle is merely for making
implementation easy since we can reuse code that is
already there and tested.

● This usage of inheritance is sometimes frowned
upon since it breaks substitutability.

20

Extension
● child class adds new functionality and does not

change the inherited behavior

Orange

ShelfOrange

-shelfLife:int

ShelfOrange(int,int,int)
+showInfo():void
+getShelfLife():int
+setShelfLife(int):void

public class ShelfOrange extends Orange{
 int lifetime;
 ShelfOrange(int newWeight, int newPrice,

int mylifetime){
 super(newPrice, newWeight);
 this.lifetime = mylifetime;
 }

 public void showInfo(int noOfTimes){
 for (int i =0 ; i < noOfTimes;i++){
 prettyPrint();
 }
 }

 public void setLifetime(int newLifetime){
 lifetime = newLifetime;
 }

 public int getLifetime(){
 return lifetime;
 }
}

21

Limitation
● child class restricts the usage of some of the

behavior found in the parent class
– e.g remove the ability to call setter methods in Orange

● An inherited method can be redefined or overridden
in a subclass definition.

public class FixedOrange extends Orange{

 //overrides setters
 public void setPrice(){
 System.out.println(“FixedOrange does not allow setters”);
 }
 public void setWeight(){
 System.out.println(“FixedOrange does not allow setters”);
 }
}

22

Overriding
● In order to override a method in a subclass

– the method name must be the same

– the number of arguments and their corresponding types
must be the same

– the method modifiers must be he same

public class FixedOrange extends Orange{

 //overrides setters
 public void setPrice(){
 System.out.println(“FixedOrange does not allow setters”);
 }
 public void setWeight(){
 System.out.println(“FixedOrange does not allow setters”);
 }
}

23

Overloading
● Overloading uses the same method name but

different arguments
– e.g. different number of arguments, different types

public class FixedOrange extends Orange{

 //overrides setters
 public void setPrice(){
 System.out.println(“FixedOrange does not allow setters”);
 }
 public void setWeight(){
 System.out.println(“FixedOrange does not allow setters”);
 }

 //overload prettyPrint
 public void prettyPrint(int noOfTimes){
 for (int i =0 ; i < noOfTimes;i++){
 prettyPrint();
 }
 }
}

