
1

Recap
● A class is a template from which objects can be

created.
– Can have a number of instances

● An object contains
– State (attributes, instance variables)

– Behavior (methods, messages)

● A program is a series of messages and responses
that are send and received between objects
– behavior is shared amongst objects

2

Constructor methods
● private limits direct

access (via '.') to the class
and its subclasses.

● A special method that
has the same name as the
class, used to create and
initialize objects

● public methods provide
read and write access to
private members
– getter methods

– setter methods

public class Triangle {
 private int sideA;
 private int sideB;
 private int sideC;

 Triangle(int v1, int v2, int v3){
this.sideA = v1;
this.sideB = v2;
this.sideC = v3;

 }
 public int getSideA(){

return sideA;
 }
 public int getSideB(){

return sideB;
 }
 public int getSideC(){

return sideC;
 }
 public void setSideA(int newVal){

sideA = newVal;
 }
 public void setSideB(int newVal){

sideB = newVal;
 }
 public void setSideC(int newVal){

sideC = newVal;
 }
 }

3

Constructor methods (cont)
● What happens when a

Java object is initialized:
– data fields are set to 0,
false or null

– data fields with initializers
are set in the order they
appear in the class
definition

– the constructor method
body is executed

● this is a special
keyword that denotes the
current executing object.

public class Triangle {
 private int sideA;
 private int sideB;
 private int sideC;

 Triangle(int v1, int v2, int v3){
this.sideA = v1;
this.sideB = v2;
this.sideC = v3;

 }

....
 }

Omitting the modifier
defaults to private

4

The anatomy of a method

● modifiers
– public, private, protected, final, static

● return-type
– void, int, String, Triangle... any Java Type

● method-name
– getX, setY, toString, compareWith ... name starting with lower

case

● arguments (comma separated list of <type> <name>)

<modifiers> <return-type> <method-name>(<arguments>)

{

<method-body>

}

5

The anatomy of a method (cont)
● method-body

– a list of Java statements

public int area(){
 int result = 0;
 result = (sideA*sideB)/2;
 return result;
 }

● All different paths of execution inside the method should return a
value of the type specified as the methods return type !

public int area(){
 int result = 0;
 if (sideA != 0 && sideB != 0){

result = (sideA*sideB)/2;
 return result;

} else {
return result;

}
 }

6

The anatomy of a method (cont)
● Local method variables have to be initialized. The following piece

of code gives a compilation error

public int area(){
 int result;
 if (sideA != 0 && sideB != 0){

result = (sideA*sideB)/2;
 return result;

} else {
return result;

}
 }

result is not initialized
in the else branch

7

The anatomy of a method (cont)
● Field shadowing

public class Rectangle{
int sideA;
int sideB;

Rectangle(int value1, int value2){
int sideA = value1;
int sideB = value2;
System.out.println(“SideA Constructor = “ + sideA +”\n”);
System.out.println(“SideB Constructor = “ + sideB +”\n”);

}
public void showInfo(){

System.out.println(“SideA = “ + sideA +”\n”);
System.out.println(“SideB = “ + sideB +”\n”);

}

● int sideA = value1;

– inside the constructor creates a new local variable also called
sideA and gets the value1. On method exit this variable goes
away

8

Categorizing methods
● Accessors

– methods that are used to obtain information from an
object without affecting its state.

● e.g. getAge(), getArea()
● Mutators

– methods that alter the state of the object
● e.g. incrementAgeByOne(), setAge(int)

● The “features” of an object refer to both its state
and behavior.

9

Control flow (if)
if (<boolean-expression>){

<then-block>

}else{

<else-block>

}

if (age < 21){

underAge = true;

}else{

underAge = false;

}

if (<boolean-expression>){

<then-block>

}else if(<boolean-expression>){

<elseif-block>

} else{

<else-block>

R
ep

ea
t

if (age < 19 && age >= 13){

teenager = true;

}else if(age >= 19 && age< 21){

underAge = true;

}else if (age >= 21 && age<60){

adult = true;

}else{

seniorCitizen = true;

}

O
pt

io
na

l

10

Control flow (while)
int i=0;

while(i <= 10){

System.out.println(“Hi!”);

i++;

}

while(<test>){

<while-block>

}

do{

<do-while-block>

}while(<test>)

int i=0;

do{

 System.out.println(“Hi!”);

i++;

}while(i <= 10)

11

Control flow (for)
for(int i=0; i <= 10; i++){

System.out.println(“Hi!”);

}

for(<init>;<termination>;<incr>){

<for-block>

}

int i=0;

while(i <= 10){

System.out.println(“Hi!”);

i++;

}

for(int i=0; i <= 10; i++){

System.out.println(“Hi!”);

}

12

Control flow (switch)
int age = 12;

switch(month){

case 10:

teacher=”Smith”;

break;

case 11:

teacher=”Jones”;

break;

default:

 if (age < 10 || age > 12){

System.out.println(“Wrong
age group);

}

}

// rest of the program

switch(<integer-expre>):

case <int-val>: <statements>

default:<statements>

}

R
ep

ea
t

● break forces control to move
to the first statement after the
whole switch block

● Without break execution falls
through to the next switch case.

13

Java Arrays
● An ordered collection,

or numbered list of
values.
– values can be

primitive, objects or
other arrays

– All elements of the
array must be of the
same type

// defining arrays
int a;
int[] arrayofIntegers;
Triangle[] arrayofTriangles;

//creating
String[] lines = new String[9];
int[] sequence = new int[10];

0 1 2 3 4 5 6 7 8 9

contents:

position:

14

Java Arrays(cont)
● Using [] and the

number corresponding
to the index allows
you to read/write to
that array location

//creating
int[] sequence = new int[10];

//assigning to an array
sequence[0] = 1;
sequence[1] = 1;
sequence[2] = 2;
sequence[3] = 3;
sequence[4] = 5;
sequence[5] = 8;
sequence[6] = 13;
sequence[7] = 21;
sequence[8] = 34;
sequence[9] = 55;
//or
sequence ={1,1,2,3,58,13,21,34,55};

1 1 2 3 5 8 13 21 34 55

0 1 2 3 4 5 6 7 8 9

contents:

position:

15

Java Arrays(cont)
● You can get the length

of the array
– special call on arrays

● You cannot change the
length of an array once
you have defined it.
– we are again using '.'

but it is specially made
for array types in Java.

//assigning to an array
sequence ={1,1,2,3,58,13,21,34,55};

for (int i=0; i < sequence.length;i++)
{

System.out.prinln(“Index “+i+
 ” holds ”+
 sequence[i]);

}

1 1 2 3 5 8 13 21 34 55

0 1 2 3 4 5 6 7 8 9

contents:

position:

16

Categorizing classes
● Packages

– bundles that can be created using Java to group together
classes (library).

package geometry;

public class Triangle{
int sideA;
int sideB;
int sideC;

// same as before

geometry

int sideA
int sideB
int sideC

Triangle

17

Categorizing classes (cont)

package geometry;

public class Rectangle{
int sideA;
int sideB;

// same as before
}

geometry

int sideA
int sideB
int sideC

Triangle

package geometry;

public class Triangle{
int sideA;
int sideB;
int sideC;

// same as before
}

int sideA
int sideB
int sideC

Rectangle

18

Categorizing classes (cont)

geometry

int sideA
int sideB
int sideC

Triangle

int sideA
int sideB
int sideC

Rectangle

● public class Triangle

– allows for objects in
different packages to create
and use Triangle

● private int sideA

– doesn't allow Rectangle
to directly access sideA
(using '.' notation)

– accessor methods have to
be used.

● API
– provides information as to

which features are
available inside a library

19

Categorizing classes (cont)

geometry

int sideA
int sideB
int sideC

Triangle

int sideA
int sideB
int sideC

Rectangle

● Java imposes a restriction when creating packages

geometry

Triangle.class

Rectangle.class

20

Categorizing classes (cont)

geometry
geometry

Triangle.class

Rectangle.class

musiclibrary

lecture2

lecture2

musiclibrary

CD.class

LP.class

21

Categorizing classes (cont)

geometry

musiclibrary

lecture2

import lecture2.geometry.Triangle;

public class Main{
 public static void main(String[] args){

 Triangle test = new Triangle(3,4,5);
 }
}

Make available the classes
found in the package that

follows

Triangle is declared public
and can be used by objects

of a different package (i.e. Main)

22

A recipe for coding
● Give your classes “good” names

● Triangle, Rectangle, CDLibrary
● NOT: MyClass, ThisClass, AnotherObject

● Hide unnecessary information from other objects
● internal memory of the object should always be

declared private
● use accessors and mutators to read and write

● Comment each method with
– expected values as input (pre-condition)

– expected results given correct inputs (post-conditions)

– write example inputs and outputs inside your comments

23

A recipe for coding(cont)
/**
* Class: Triangle
* Author: Theo
* Goal: represents a right-angle
* triangle. Calculates area
* and perimeter
*/

public class Triangle {
 // Sides are integers
 int sideA;
 int sideB;
 int sideC;

//Accessors
 public int getSideA(){

return sideA;
 }
 public int getSideB(){

return sideB;
 }
 public int getSideC(){

return sideC;
 }

// mutators
 public void setSideA(int value){

sideA=value;
 }
 public void setSideB(int value){

sideB=value;
 }
 public void setSideC(int value){

sideC=value;
 }

/**
* area():int
* calculate the area of a rTriangle
* pre: true
* post: result = (sideA*sideB)/2
*/
 public int area(){
 int result = 0;
 result = (sideA*sideB)/2;
 return result;
 }
 ...
}

24

A recipe for coding(cont)
● After you compile with no errors YOU ARE NOT

DONE.
● You should stress test your code

– test for different values as input
● try also wrong values to see how your program behaves

– test for the different execution flows
● provide test cases that exercise control flow constructs with

ALL their branching.
– make sure that all the test cases provide the “correct” results.

● correct results = same output as the one described by your
customer (homework, design, text description)

– if a test case fails
● detect, fix and run again

