
CSG 100 Data Structures Fall 2004

Problem Set #2: Objects inside Objects inside Objects...

Due Date: 21 st of October

Goal:

In this exercise you are to play the role of a developer who is given a specification and
description of the data structures and their operations. You then have to provide a Java
implementation for this specification.

Instructions:

For each exercise make sure you provide a main method to run your code as well as
all the test cases that you have used to test your code. Comment all of your code and
provide any information about your homework in a separate text file called
README.txt. Send all your files to skotthe@ccs.neu.edu.

1) More fruits and baskets.

Figure 1: Class Hierarchy for Fruits

Fruit is an abstract class with two instance variables

● price of type double

● weight of type double

Fruit also provides the following methods along with their implementation:

1.getWeight():double

2.getPrice():double

3.setWeight(double):void

4.setPrice(double):void

The following method is defined as abstract in Fruit and all subclasses should provide
their own implementation for it

1.prettyPrint():String

You are asked to implement all the subclasses of Fruit as shown in Figure 1.

You are now asked to implement different fruit basket offers

Fruit

Apple MangoBananaOrange

1.FruitBasket

● can contain at most 10 fruits of any combination of types (e.g. Apple,
Banana, Mango or Orange)

● implements methods to add a fruit to the basket (i.e. addFruit
(Fruit):boolean) and to remove a fruit from the basket (i.e.
removeFruit(int):boolean). Both methods return true on
success and false otherwise.

● implements the method showContents():String, that prints out
the contents of the Basket.

● implements the method getBasketWeight():double that returns
the total weight of the basket

● implements the method getBasketPrice():double that returns
the total price of the basket

1. AppleBasket

● can contain as many apples as possible as long as the total price of the
basket does not exceed $10.

● the same methods as FruitBasket are also implemented by
AppleBasket i.e. showContents(), getBasketWeight(),
getBasketPrice(), addFruit(Fruit), remove(Fruit)

2.OrangeBasket

● can contain as many oranges as possible as long as the total weight of
the basket does not exceed 10kg

● the same methods as FruitBasket are also implemented by
OrangeBasket i.e. showContents(), getBasketWeight(),
getBasketPrice(), addFruit(Fruit), remove(Fruit)

(Hint: Take advantage of the repetitive behavior that all baskets must have)

Finally implement SaleTrolley which can take at most 10 baskets. SaleTrolley
has to also provide the following methods

1. showTrolleyPrice():double, providing the total cost of all the fruits
found in the trolley.

2. showTrolleyWeight():double, providing the total weight of all the
fruits found in the trolley.

3. showTrolleyContents():String, that returns as a string a pretty
printing of all the baskets with their contents.

(30 Points)

2) Manipulating shapes.

Figure 2: Class Hierarchy of Shapes.

The class Shape is an abstract class with one instance variable of type
CartesianPoint (Figure 3). Shape defines the following public abstract methods:

1. area():double, returns the area of the Shape.

2. distanceToOrigin():double, the distance from (0,0) to the Shape's
CartesianPoint

3. distanceToShape(Shape):double, distance from this Shape's
CartesianPoint to the argument's CartesianPoint

4. in(Dot):boolean, return true if the Dot given as argument is within the area
of the Shape.

5. draw():String, this method return the information of a Shape in the form of a
string.

CartesianPoint is defined as:

Figure 3. Class Diagram for CartesianPoint.

You are asked to provide the implementation for each of the subclasses of Shape. You
should provide the implementation for each of the inherited abstract methods but also add
any new instance variables and methods that you need in order to calculate the area of
each shape. You might find java.lang.Math helpful.

(30 Points)

Shape

Rectangle Circle DotSquare

CartesianPoint

-int Xcoord
-int Ycoord

+distanceFromOrigin():double
+distanceFromPoint(CartesianPoint):double

3) Implement a ToDo List. A ToDo list can have many levels of nesting. The first level of
nesting consists of ToDoEntries which hold the date of entry, the due date for the
task as well as a list of sub-items that need to be done for this task. Sub-items can be
any valid string that holds information about what to do. For example my ToDo List is

Added: 10/15/2004

Due : 17/15/2004

Id: CSG100

Items:

1) Check final class list for csg100

2) Check homework2

3) Update the Web page

Items:

1. New Slide

2. New Homework

3. New Links for IDEs

Added: 10/14/2004

Due: 10/16/2004

Id: Conferences

Items:

1) Check Conference dates

2) Submit proposal for demo

3) email details

Added: 09/30/2004

Due: 12/20/2004

Id: Personal

Items:

1) check plane tickets

The following Class Diagram is to help you get started.

ToDoList has to provide the following functionality:

1. addListEntry(ListEntry):boolean, adds a new ListEntry to the
ToDoList

2. addToDoItem(Id, ToDoItem):boolean, adds ToDoItem to the
ListEntry with Id.

3. showList():String, pretty print the whole list and return the result as a
String

4. showOnlyToday(Date):String, pretty print the part of the list that is due
today as a String

5. showOnlyTomorrow(Date):String, pretty print the part of the list that is
due tomorrow and return it as a String

Define Date as a Java class that holds three integers, month, day and year. Define also a
pretty-print method on Date.

(40 Points)

ToDoList ListEntry
-startDate:Date
-dueDate:Date

-id:String

-itemToDo:String

ToDoItem1 * 1 *

1

*

