
CS	5600
Computer	Systems

Project	3:	Virtual	Memory	in	Pintos



Virtual	Memory	in	Pintos

• Pintos	already	implements	a	basic	virtual	
memory	system
– Can	create	and	manage	x86	page	tables
– Functions	for	translating	virtual	addresses	into	
physical	addresses

• But	this	system	has	limitations
– No	support	for	swapping	pages	to	disk
– No	support	for	stack	growth
– No	support	for	memory	mapping	files

2



Your	Goals
1. Implement	page	swapping
– If	memory	is	full,	take	a	page	from	physical	memory	

and	write	it	to	disk
– Keep	track	of	which	pages	have	been	moved	to	disk
– Reload	pages	from	disk	as	necessary

2. Implement	a	frame	table
– Once	memory	becomes	full,	which	pages	should	be	

evicted?
3. Implement	a	swap	table
– Maps	pages	evicted	from	memory	to	blocks	on	disk

3



Your	Goals	(cont.)

4. Implement	stack	growth
– In	project	2,	the	stack	was	limited	to	one	page
– Allow	the	stack	to	grow	dynamically

5. Implement	mmap()	and	munmap()
– i.e.	the	ability	to	memory	map	files
– Create	a	table	that	keeps	track	of	which	files	are	

mapped	to	which	pages	in	each	process

4



What	Pintos	Does	For	You
• Basic	virtual	memory	management
– User	processes	live	in	virtual	memory,	cannot	
access	the	kernel	directly

– Kernel	may	access	all	memory
– Functions	to	create	and	query	x68	page	tables

• Trivial	filesystem implementation
– You	can	read	and	write	data	to	disk
– Thus,	you	can	read	and	write	memory	pages

5



Utilities
• threads/pte.h
– Functions	and	macros	for	working	with	32-bit	x86	
Page	Table	Entries	(PTE)

• threads/vaddr.h
– Functions	and	macros	for	working	with	virtualized	
addresses

– Higher-level	functionality	than	pte.h
– Useful	for	converting	user	space	pointers	into	
kernel	space

• userprog/pagedir.c
– Implementation	of	x86	page	tables 6



• Page	fault	handler:	userprog/exception.c
static void page_fault (struct intr_frame *f)	 {
bool not_present,	 write,	user;
void *fault_addr;		/*	Fault	address.	*/

asm ("movl %%cr2,	%0"	:	"=r" (fault_addr));	 /*	Obtain	faulting	address*/
intr_enable ();
page_fault_cnt++;	/*	Count	page	faults.	*/

/*	Determine	cause.	*/
not_present =	(f->error_code &	PF_P)	==	0;	/*	True:	not-present	page,

false:	writing	r/o	page.	*/
write	=	(f->error_code &	PF_W)	!=	0;													/*	True:	access	was	write,

false:	access	was	read.	*/
user	=	(f->error_code &	PF_U)	!=	0;																/*	True:	access	by	user,

false:	access	by	kernel.	*/

/*	Code	for	handling	swapped	pages	goes	here!	*/

printf ("Page	fault	at	%p:	%s	error	%s	page	in	%s	context.\n”,	…);
kill	(f);

}
7



Supplementary	Page	Tables

• The	format	of	the	page	table	is	defined	by	the	
x86	standard
– You	can’t	modify	or	add	to	it

• Thus,	you	will	need	to	define	additional	data	
structures
– Supplementary	page	tables
– Keep	track	of	info	for	eviction	policy,		mapping	
from	swapped	memory	pages	to	disk,	locations	of	
memory	mapped	files,	etc.

8



Project	3	Is	Open	Ended

• The	previous	projects	were	about	you	
extending	the	functionality	of	Pintos

• In	this,	you	are	free	to	implement	things	
however	you	wish
– pintos/src/vm/	is	basically	empty

9



Key	Challenges

• Choosing	the	right	data	structures
– Time	and	memory	efficiency	are	critical
– Hash	tables?	Lists?	Bitmaps?
– You	don’t	need	to	implement	more	exotic	data	
structures	(e.g.	red-black	trees)

• Handling	page	faults
– All	swapping	is	triggered	by	page	faults
– Handling	them,	and	restarting	the	faulting	
instruction,	are	critical

10



More	Key	Challenges

• Implementing	eviction
– How	do	you	choose	which	page	to	evict?

• Detecting	stack	growth
– You	will	need	to	develop	heuristics	to	determine	
when	a	process	wants	to	grow	the	stack

• Managing	concurrency
– Pages	can	be	evicted	at	any	time
–What	happens	if	the	kernel	or	a	process	is	
accessing	them?

11



Extra	Credit	Challenge!

• Implementing	Sharing
–What	happens	if	a	program	is	run	>1	time?
• You	could	share	the	code	pages

–What	happens	if	>1	process	mmap()s	the	same	
file?

• Worth	an	additional	two	points
– So	17	out	of	15

12



Things	Not	To	Worry	About

• Your	supplementary	data	structures	may	live	
in	kernel	memory
– i.e.	they	will	never	get	swapped	to	disk
– In	a	real	OS,	page	tables	may	be	swapped	to	disk

13



Modified	Files
• Makefile.build 4
• threads/init.c 5
• threads/interrupt.c 2
• threads/thread.c 31
• threads/thread.h 37
• userprog/exception.c 12
• userprog/pagedir.c 10
• userprog/process.c 319
• userprog/syscall.c 545
• userprog/syscall.h 1
• vm/<new	files> 628
• 11+	files	changed,	1594	insertions,	104	deletions

14

Support	for	
mmap()	syscall

Initialize	
supplementary	tables	
for	the	system	and	

per	thread

Add	new	files

Modified	page	fault	handler

Swapping	implementation



Grading
• 15	(+2)	points	total
• To	receive	full	credit:
– Turn	in	working,	well	documented	code	that	
compiles	successfully	and	completes	all	tests	(50%)

– Turn	in	a	complete,	well	thought	our	design	
document	(50%)

• If	your	code	doesn’t	compile	or	doesn’t	run,	you	
get	zero	credit
– Must	run	on	the	CCIS	Linux	machines!

• All	code	will	be	scanned	by	plagiarism	detection	
software


