
CS 5600  
Computer Systems

Lecture 4: Programs, Processes,
and Threads

• Programs
• Processes
• Context Switching
• Protected Mode Execution
• Inter-process Communication
• Threads

2

Running Dynamic Code
• One basic function of an OS is to execute

and manage code dynamically, e.g.:
– A command issued at a command line

terminal
– An icon double clicked from the desktop
– Jobs/tasks run as part of a batch system

(MapReduce)
• A process is the basic unit of a program

in execution

3

Programs and Processes

4

Program
An executable

file in long-term
storage

Process
The running

instantiation of a
program, stored in

RAM

One-to-many
relationship

between program
and processes

How to Run a Program?
• When you double-click on an .exe,

how does the OS turn the file on disk
into a process?

• What information must the .exe file
contain in order to run as a program?

5

Program Formats
• Programs obey specific file formats

– CP/M and DOS: COM executables (*.com)
– DOS: MZ executables (*.exe)

• Named after Mark Zbikowski, a DOS developer
– Windows Portable Executable (PE, PE32+) (*.exe)

• Modified version of Unix COFF executable format
• PE files start with an MZ header.

– Mac OSX: Mach object file format (Mach-O)
– Unix/Linux: Executable and Linkable Format (ELF)

• designed to be flexible and extensible
• all you need to know to load and start execution 

regardless of architecture

6

ABI - Application Binary Interface

• interface between 2 programs at the binary
(machine code) level
– informally, similar to API but on bits and bytes

• Calling conventions
– where are args and results stored

• Binary format info to be passed from one
program to another

• Compiler and OS take care of this
– binaries created from different compiler-OS pair

will not always run on your machine!

7

test.c
#include <stdio.h>

int big_big_array[10 * 1024 * 1024];
char *a_string = "Hello, World!";
int a_var_with_value = 100;

int main(void) {
big_big_array[0] = 100;
printf("%s\n", a_string);
a_var_with_value += 20;

printf("main is : %p\n", &main);
return 0;

}
8

ELF File Format
• ELF Header
– Contains compatibility info
– Entry point of the executable

code
• Program header table
– Lists all the segments in the file
– Used to load and execute the

program
• Section header table
– Used by the linker

9

ELF Header Format
typedef struct {
 unsigned char e_ident[EI_NIDENT];
 Elf32_Half e_type;
 Elf32_Half e_machine;
 Elf32_Word e_version;
 Elf32_Addr e_entry;
 Elf32_Off e_phoff;
 Elf32_Off e_shoff;
 Elf32_Word e_flags;
 Elf32_Half e_ehsize;
 Elf32_Half e_phentsize;
 Elf32_Half e_phnum;
 Elf32_Half e_shentsize;
 Elf32_Half e_shnum;
 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

10

ISA of executable code

Offset of program
headers

Offset of section headers

of program headers

of section headers

• Entry point of
executable code

• What should EIP be
set to initially?

ELF Header Example
$ gcc –g –o test test.c
$ readelf --header test
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1
 Entry point address: 0x400460
 Start of program headers: 64 (bytes into file)
 Start of section headers: 5216 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 9
 Size of section headers: 64 (bytes)
 Number of section headers: 36
 Section header string table index: 33

11

Investigating the Entry Point
int main(void) {
 …
 printf("main is : %p\n", &main);
 return 0;
}

12

$ gcc -g -o test test.c
$ readelf --headers ./test | grep Entry point'
 Entry point address: 0x400460
$./test
 Hello World!
 main is : 0x400544

Entry point != &main

13

$./test
 Hello World!
 main is : 0x400544
$ readelf --headers ./test | grep Entry point'
 Entry point address: 0x400460
$ objdump --disassemble –M intel ./test
…
0000000000400460 <_start>:
 400460: 31 ed xor ebp,ebp
 400462: 49 89 d1 mov r9,rdx
 400465: 5e pop rsi
 400466: 48 89 e2 mov rdx,rsp
 400469: 48 83 e4 f0 and rsp,0xfffffffffffffff0
 40046d: 50 push rax
 40046e: 54 push rsp
 40046f: 49 c7 c0 20 06 40 00 mov r8,0x400620
 400476: 48 c7 c1 90 05 40 00 mov rcx,0x400590
 40047d: 48 c7 c7 44 05 40 00 mov rdi,0x400544
 400484: e8 c7 ff ff ff call 400450 <__libc_start_main@plt>
…

• Most compilers insert extra
code into compiled
programs

• This code typically runs
before and after main()

Sections and Segments
• Sections are the various

pieces of code and data
that get linked together
by the compiler

• Each segment contains
one or more sections
– Each segment contains

sections that are related
• E.g. all code sections

– Segments are the basic
units for the loader

14

Segments

Multiple sections
in one segments

Common Sections
• Sections are the various pieces of code

and data that compose a program
• Key sections:
– .text – Executable code
– .bss – Global variables initialized to zero
– .data, .rodata – Initialized data and strings
– .strtab – Names of functions and variables
– .symtab – Debug symbols

15

Section Example
int big_big_array[10*1024*1024];
char *a_string = "Hello, World!";
int a_var_with_value = 0x100;

int main(void) {
 big_big_array[0] = 100;
 printf("%s\n", a_string);
 a_var_with_value += 20;
 …
}

16Code ! .text

Empty 10 MB
array ! .bss

String variable ! .data

String constant ! .rodata

Initialized global
variable ! .data

$ readelf --headers ./test
…
 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .note.gnu.build-
id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini
.rodata .eh_frame_hdr .eh_frame
 03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
 04 .dynamic
 05 .note.ABI-tag .note.gnu.build-id
 06 .eh_frame_hdr
 07
 08 .ctors .dtors .jcr .dynamic .got
…
There are 36 section headers, starting at offset 0x1460:
Section Headers:
[Nr] Name Type Address Offset Size ES Flags Link Info Align
[0] NULL 00000000 00000000 00000000 00 0 0 0
[1] .interp PROGBITS 00400238 00000238 0000001c 00 A 0 0 1
[2] .note.ABI-tag NOTE 00400254 00000254 00000020 00 A 0 0 4
[3] .note.gnu.build-I NOTE 00400274 00000274 00000024 00 A 0 0
 4
[4] .gnu.hash GNU_HASH 00400298 00000298 0000001c 00 A 5 0 8
[5] .dynsym DYNSYM 004002b8 000002b8 00000078 18 A 6 1 8
[6] .dynstr STRTAB 00400330 00000330 00000044 00 A 0 0 1
[7] .gnu.version VERSYM 00400374 00000374 0000000a 02 A 5 0 2
…

$ readelf --sections ./test
...
Section Headers:
…
[Nr] Name Type Address Offset Size ES Flags Link
Info Align
[13] .text PROGBITS 00400460 00000460 00000218 00 AX 0 0 16
…

.text Example Header
typedef struct {
 Elf32_Word p_type;
 Elf32_Off p_offset;
 Elf32_Addr p_vaddr;
 Elf32_Addr p_paddr;
 Elf32_Word p_filesz;
 Elf32_Word p_memsz;
 Elf32_Word p_flags;
 Elf32_Word p_align;
 }

Address to load
section in
memory

Data for the
program

Offset of data in the
file

Executable

How many bytes (in
hex) are in the section

$ readelf --sections ./test
...
Section Headers:
…
[Nr] Name Type Address Offset Size ES Flags Link Info Align
[25] .bss NOBITS 00601040 00001034 02800020 00 WA 0 0 32
[26] .comment PROGBITS 00000000 00001034 000002a 01 MS 0 0 1
…

.bss Example Header
int big_big_array[10*1024*1024]; typedef struct {

 Elf32_Word p_type;
 Elf32_Off p_offset;
 Elf32_Addr p_vaddr;
 Elf32_Addr p_paddr;
 Elf32_Word p_filesz;
 Elf32_Word p_memsz;
 Elf32_Word p_flags;
 Elf32_Word p_align;
 }

Address to load
section in
memory

Contains
no data

Offset of data in the
file

Writable

hex(4*10*1024*1024) =
0x2800020

Segments
• Each segment contains one or more sections
– All of the sections in a segment are related, e.g.:

• All sections contain compiled code
• Or, all sections contain initialized data
• Or, all sections contain debug information
• … etc…

• Segments are used by the loader to:
– Place data and code in memory
– Determine memory permissions (read/write/

execute)

20

Segment Header
 typedef struct {
 Elf32_Word p_type
 Elf32_Off p_offset;
 Elf32_Addr p_vaddr;
 Elf32_Addr p_paddr;
 Elf32_Word p_filesz;
 Elf32_Word p_memsz;
 Elf32_Word p_flags;
 Elf32_Word p_align;
 }

21

Type of segment

Offset within the ELF
file for the segment data

Size of the segment
data on disk

Location to load the
segment into memory

Size of the segment in
memory

• Flags describing the
section data

• Examples: executable,
read-only

$ readelf --segments ./test
Elf file type is EXEC (Executable file)
Entry point 0x400460
There are 9 program headers, starting at offset 64

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
 PHDR 0x00000040 0x00400040 0x00400040 0x000001f8 0x000001f8 R E 8
 INTERP 0x00000238 0x00400238 0x00400238 0x0000001c 0x0000001c R 1
 LOAD 0x00000000 0x00400000 0x00400000 0x0000077c 0x0000077c R E 200000
 LOAD 0x00000e28 0x00600e28 0x00600e28 0x0000020c 0x02800238 RW 200000
 DYNAMIC 0x00000e50 0x00600e50 0x00600e50 0x00000190 0x00000190 RW 8
 NOTE 0x00000254 0x00400254 0x00400254 0x00000044 0x00000044 R 4
 GNU_EH_FRAME 0x000006a8 0x004006a8 0x004006a8 0x0000002c 0x0000002c R 4
 GNU_STACK 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 RW 8
 GNU_RELRO 0x00000e28 0x00600e28 0x00600e28 0x000001d8 0x000001d8 R 1

 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .note.gnu.build-
id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .e
h_frame
 03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
 04 .dynamic
…

Executable

#include <stdio.h>

int big_big_array[10 * 1024 * 1024];
char *a_string = "Hello, World!";
int a_var_with_value = 100;

int main(void) {
big_big_array[0] = 100;
printf("%s\n", a_string);
a_var_with_value += 20;

printf("main is : %p\n", &main);
return 0;

}

What About Static Data?

23

$ strings –t d ./test
 568 /lib64/ld-linux-
x86-64.so.2
 817 __gmon_start__
 832 libc.so.6
 842 puts
 847 printf
 854 __libc_start_main
 872 GLIBC_2.2.5
 1300 fff.
 1314 =
 1559 l$ L
 1564 t$(L
 1569 |$0H
 1676 Hello, World!
 1690 main is : %p
 1807 ;*3$"

The Program Loader
• OS functionality that

loads programs into
memory, creates
processes
– Places segments into

memory
• Expands segments like .bss

– Loads necessary dynamic
libraries

– Performs relocation
– Allocates the initial stack

frame
– Sets EIP to the programs

entry point
24

ELF Header

.text

.data

.rodata

.bss

ELF Program

Memory

.text
.data

.rodata

.bss

Heap

Stack
ESP

EIP

Single-Process Address Apace
• The stack is used for local variables

and function calls
– Grows downwards

• Heap is allocated dynamically
(malloc/new)
– Grows upwards

• When the stack and heap meet,
there is no more memory left in the
process
– Process will probably crash

• Static data and global variables are
fixed at compile time

25

Memory

.text
.data

.rodata

.bss

Heap

Stack

Problem: Pointers in Programs
• Consider the following code:
 int foo(int a, int b) { return a * b – a / b; }
 int main(void) { return foo(10, 12); }

• Compiled, it might look like this:
 000FE4D8 <foo>:
 000FE4D8: mov eax, [esp+4]
 000FE4DB: mov ebx, [esp+8]
 000FE4DF: mul eax, ebx
 …
 000FE21A: push eax
 000FE21D: push ebx
 000FE21F: call 0x000FE4D8
• … but this assembly assumes foo() is at address

0x000FE4D8

Program Load Addresses

• Loader must place each
process in memory

• Program may not be
placed at the correct
location!
– Example: two copies of

the same program

27

0xFFFFFFFF

0x00000000

Code

Heap

Stack

Process 1

Code

Heap

Stack

Process 2

Addr of foo():
0x000FE4D8

Addr of foo():
0x0DEB49A3

Address Spaces for Multiple
Processes

• Many features of processes
depend on pointers
– Addresses of functions
– Addresses of strings, data
– Etc.

• For multiple processes to
run together, they all have
to fit into memory together

• However, a process may
not always be loaded into
the same memory location

28

0xFFFFFFFF

0x00000000

Code

Heap

Stack

Process 2

Code

Heap

Stack

Process 1

Code

Heap

Stack

Process 3

Address Spaces for Multiple
Processes

• There are several methods for
configuring address spaces for
multiple processes
1. Fixed address compilation
2. Load-time fixup
3. Position independent code
4. Hardware support

29

Fixed-Address Compilation

Single Copy of Each Program
• Compile each program

once, with fixed
addresses

• OS may only load program
at the specified offset in
memory

• Typically, only one
process may be run at any
time

• Example: MS-DOS 1.0

Multiple Copies of Each Program
• Compile each program

multiple times
• Once for each possible

starting address
• Load the appropriate

compiled program when
the user starts the
program

• Bad idea
– Multiple copies of the same

program
30

Load-Time Fixup
• Calculate addresses at load-time instead

of compile-time
• The program contains a list of locations

that must be modified at startup
– All relative to some starting address

• Used in some OSes that run on low-end
microcontrollers without virtual memory
hardware

Program
0x000 CALL xxx

 ...
0x300 ...

000: xxx=+300  

Fix-up  
information

After
loading

0x200 CALL 0x500
 ...

0x500 ...

31

Position-Independent Code
• Compiles programs in a way that is

independent of their starting address
– PC-relative address

• Slightly less efficient than absolute
addresses

• Commonly used today for security
reasons PC-relative

addressing
Absolute

addressing
0x200 CALL 0x500
 ...
0x500 ...

0x200 CALL PC+0x300
 ...

0x500 ...
32

Hardware Support
• Hardware address translation
• Most popular way of sharing memory

between multiple processes
– Linux
– OS X
– Windows

• Program is compiled to run at a fixed
location in virtual memory

• The OS uses the MMU to map these
locations to physical memory

33

MMU and Virtual Memory
• The Memory Management Unit (MMU)

translates between virtual addresses
and physical addresses
– Process uses virtual address for calls and

data load/store
– MMU translates virtual addresses to

physical addresses
– The physical addresses are the true

locations of code and data in RAM

34

Advantages of Virtual Memory

• Flexible memory sharing
– Simplifies the OS’s job of allocating memory to

different programs
• Simplifies program writing and

compilations
– Each program gets access to 4GB of RAM (on

a 32-bit CPU)
• Security
– Can be used to prevent one process from

accessing the address of another process
• Robustness
– Can be used to prevent writing to addresses

belonging to the OS (which may cause the OS
to crash) 35

Virtual Memory - 
Base and Bounds Registers

• A simple mechanism for address translation
• Maps a contiguous virtual address region to

a contiguous physical address region

36
0x0000

0xFFFF
Kernel

Memory

Process 1

Physical Memory

0x00FF

0x10FF
Process 1

Process’ View of
Virtual Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000

Base and Bounds Example

37

0x0000

0xFFFF
Kernel

Memory

Process 1

Physical Memory

0x00FF

0x10FF
Process 1

Process’ View of
Virtual Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000

0x0023 mov eax, [esp]

1) Fetch instruction
0x0023 + 0x00FF =
0x0122

2) Translate memory
access
0x0F76 + 0x00FF =
0x1075

3) Move value to register
[0x1075] ! eax

1

21

2

Confused About Virtual Memory?

• For now, focus on the goal that Virtual
Memory’s goal

• We will discuss virtual memory at
great length later in the semester

• In project 3, you will implement
virtual memory in Pintos

38

• Programs
• Processes
• Context Switching
• Protected Mode Execution
• Inter-process
Communication
• Threads

39

From the Loader to the Kernel

• Once a program is loaded, the kernel
must manage this new process

• Program Control Block (PCB): kernel
data structure representing a process
– Has at least one thread (possibly more…)
– Keeps track of the memory used by the

process
• Code segments
• Data segments (stack and heap)

– Keeps runtime state of the process
• CPU register values
• EIP 40

Program Control Block (PCB)
• OS structure that represents a process in memory
• Created for each process by the loader
• Managed by the kernel

struct task_struct { // Typical Unix PCB
 pid t_pid; // process identifier  
 long state; // state of the process  
 unsigned int time_slice; //scheduling information  
 struct task_struct *parent; // this process’s parent  
 struct list_head children; // this process’s children  
 struct files_struct *files; // list of open files 
 struct mm_struct *mm; // address space of this
process
};

41

Process States
• As a process, P, executes, it changes state
– new: P is being created
– running: P’s instructions are being executed
– waiting: P is waiting for some event to occur
– ready: P is waiting to be assigned to a processor
– terminated: P has finished execution

42

Parents and Children
• On Unix/Linux, all processes have parents
– i.e. which process executed this new

process?
• If a process spawns other processes, they

become it’s children
– This creates a tree of processes

• If a parent exits before its children, the
children become orphans

• If a child exits before the parent calls
wait(), the child becomes a zombie

43

Process Tree
• init is a special process started by the

kernel
– Always roots the process tree

44

Additional Execution Context
• File descriptors
– stdin, stdout,

stderr
– Files on disck
– Sockets
– Pipes

• Permissions
– User and group
– Access to specific

APIs
– Memory protection 45

• Environment
– $PATH

• Shared Resources
– Locks
– Mutexes
– Shared Memory

UNIX Process Management
• fork() – system call to create a copy of

the current process, and start it running
– No arguments!

• exec() – system call to change the
program being run by the current
process

• wait() – system call to wait for a
process to finish

• signal() – system call to send a
notification to another process

46

UNIX Process Management

pid = fork();
if (pid == 0)
 exec(…);
else

wait(pid);

pid = fork();
if (pid == 0)
 exec(…);
else

wait(pid);

pid = fork();
if (pid == 0)
 exec(…);
else

wait(pid);

main() {
 …
}

pid = 0

pid = 9418

Original Process

Child Process

47

Question: What does this code
print?

int child_pid = fork();
if (child_pid == 0) { // I'm the child process
 printf("I am process #%d\n", getpid());
 return 0;
} else { // I'm the parent process
 printf("I am parent of process #%d\n",

child_pid);
 return 0;
}

48

Questions
• Can UNIX fork() return an error?

Why?

• Can UNIX exec() return an error?
Why?

• Can UNIX wait() ever return
immediately? Why?

49

Implementing UNIX fork()
• Steps to implement UNIX fork()

1. Create and initialize the process control block
(PCB) in the kernel

2. Create a new address space
3. Initialize the address space with a copy of the

entire contents of the address space of the
parent

4. Inherit the execution context of the parent
(e.g., any open files)

5. Inform the scheduler that the new process is
ready to run

50

Implementing UNIX exec()
• Steps to implement UNIX exec()

1. Load the new program into the current
address space

2. Copy command line arguments into
memory in the address space

3. Initialize the hardware context to start
execution
• EIP = Entry point in the ELF header
• ESP = A newly allocated stack

51

Process Termination
• Typically, a process will wait(pid) until

its child process(es) complete
• abort(pid) can be used to

immediately end a child process

52

• Programs
• Processes
• Context Switching
• Protected Mode Execution
• Inter-process
Communication
• Threads

53

The Story So Far…
• At this point, we have gone over how the

OS:
– Turns programs into processes
– Represents and manages running process

• Next step: context switching
– How does a process access OS APIs?

• i.e. System calls
– How does the OS share the CPU between

several programs?
• Multiprocessing

54

Context Switching
• Context switching
– Saves state of a process before a

switching to another process
– Restores original process state when

switching back
• Simple concept, but:
– How do you save the state of a process?
– How do you stop execution of a process?
– How do you restart the execution of

process that has been switched out?
55

The Process Stack
• Each process has a stack in memory that

stores:
– Local variables
– Arguments to functions
– Return addresses from functions

• On x86:
– The stack grows downwards
– ESP (Stack Pointer register) points to the

bottom of the stack (i.e. the newest data)
• EBP (Base Pointer) points to the base of the

current frame
– Instructions like push, pop, call, ret, int, and

iret all modify the stack
56

foo()’s
Frame

$ gcc -g -fno-stack-protector -m32 -o stack_exam
stack_exam.c
$ objdump --disassemble –M intel ./stack_exam
…
 804842a: e8 c0 ff ff ff call 80483ef <foo>
 804842f: b8 00 00 00 00 mov eax,0x0
…
080483ef <foo>:
 80483ef: 55 push ebp
 80483f0: 89 e5 mov ebp, esp
 80483f2: 83 ec 28 sub esp, 0x28
 80483f5: 8b 45 08 mov eax, [ebp+0x8]
 80483f8: 01 c0 add eax, eax
 80483fa: 89 45 f4 mov [ebp-0xc], eax
 80483fd: 8b 45 08 mov eax, [ebp+0x8]
 8048400: 83 e8 07 sub eax, 0x7
 8048403: 89 45 f0 mov [ebp-0x10],eax
 8048406: 8b 45 f0 mov eax, [ebp-0x10]
 8048409: 89 44 24 04 mov [esp+0x4],eax
 804840d: 8b 45 f4 mov eax, [ebp-0xc]
 8048410: 89 04 24 mov [esp], eax
 8048413: e8 bc ff ff ff call 80483d4 <bar>
 8048418: c9 leave
 8048419: c3 ret
…

main()’s local variables

12 Argument to foo()

0x804842f Return addr to
main()

Saved EBP

24 x = a * 2

5 y = a - 7

5 2nd arg for bar()

24 1st arg for bar()

0x8048418 Return addr to foo()

Memory
EBP

ESP

main()’s
FrameEIP

58

…
080483d4 <bar>:
 80483d4: 55 push ebp
 80483d5: 89 e5 mov ebp, esp
 80483d7: 83 ec 18 sub esp, 0x18
 80483da: e8 31 ff ff ff call 8048310 <rand@plt>
 80483df: 89 45 f4 mov [ebp-0xc], eax
 80483e2: 8b 45 0c mov eax, [ebp+0xc]
 80483e5: 8b 55 08 mov edx, [ebp+0x8]
 80483e8: 01 d0 add eax,edx
 80483ea: 2b 45 f4 sub eax, [ebp-0xc]
 80483ed: c9 leave
 80483ee: c3 ret
…

bar()’s
Frame

foo()’s local variables

5 2nd arg for bar()

24 1st arg for bar()

0x8048418 Return addr to
foo()

Saved EBP

Some # Result of rand()

Memory

foo()’s
FrameEIP

EBP

ESP

• leave ! mov esp, ebp; pop ebp;
• Return value is placed in EAX

Stack Switching
• We’ve seen that the stack holds
– Local variables
– Arguments to functions
– Return addresses
– … basically, the state of a running program

• Crucially, a process’ control flow is
stored on the stack

• If you modify the stack, you also modify
control flow
– Stack switching is effectively process

switching
59

Switching Between Processes

1. Process 1 calls into switch() routine
2. CPU registers are pushed onto the stack
3. The stack pointer is saved into memory
4. The stack pointer for process 2 is loaded
5. CPU registers are restored
6. switch() returns back to process 2

60

Top Frame

Return addr

Saved EAX

…

Saved EDX

Process 1’s Stack

Top Frame

Return addr

Saved EAX

…

Saved EDX

Process 2’s Stack

<switch>:
 push eax
 push ebx
 …
 push edx
 mov [cur_esp], esp
 mov esp, [saved_esp]
 pop edx
 …
 pop ebx
 pop eax
 ret

Saved ESP of Process 1

Saved ESP of Process 2

OS Memory

a = b + 1;
switch();
b--;

Process 1’s Code

puts(my_str);
switch();
my_str[0] = ‘\n’;
i = strlen(my_str);
switch();

Process 2’s Code

ESP
EIP

OS Code

Abusing Call and Return
• Context switching uses function call

and return mechanisms
– Switches into a process by returning from a

function
– Switches out of a process by calling into a

function

62

What About New Processes?
• But how do you start a process in the

first place?
– A new process doesn’t have a stack…
– … and it never called into switch()

• Pretend that there was a previous call
– Build a fake initial stack frame
– This frame looks exactly like the

instruction just before main() called into
switch()

– When switch() returns, it’ll allow main()
to run from the beginning

63

argv[…]

argc

0 (null return addr)

Address of main()

0 (null EDX)

…

0 (null EAX)

Initial Stack Frame

<switch>:
 push eax
 push ebx
 …
 push edx
 mov [cur_esp], esp
 mov esp, [saved_esp]
 pop edx
 …
 pop ebx
 pop eax
 iret

Saved ESP of Process 1

Address of New Stack

OS Memory

a = b + 1;
switch();
b--;

Process 1’s Code

main() {
 …
}

New Process ESP

EIP

OS Code

When Do You Switch Processes?

• To share CPU between multiple
processes, control must eventually
return to the OS
– When should this happen?
– What mechanisms implements the

switch from user process back to the OS?
• Four approaches:

1. Voluntary yielding
2. Switch during API calls to the OS
3. Switch on I/O
4. Switch based on a timer interrupt

65

Voluntary Yielding
• Idea: processes must voluntary give up

control by calling an OS API, e.g.
thread_yield()

• Problems:
– Misbehaving or buggy apps may never

yield
– No guarantee that apps will yield in a

reasonable amount of time
– Wasteful of CPU resources, i.e. what if a

process is idle-waiting on I/O?

66

Interjection on OS APIs
• Idea: whenever a process calls an OS API,

this gives the OS an opportunity to context
switch
– E.g. printf(), fopen(), socket(), etc…

• The original Apple Macintosh used this
approach
– Cooperative multi-tasking

• Problems:
– Misbehaving or buggy apps may never yield
– Some normal apps don’t use OS APIs for long

periods of time
• E.g. a long, CPU intensive matrix calculation

67

I/O Context Switch Example
• What’s happening here?

struct terminal {
queue<char> keystrokes; /* buffered keystrokes - array or list */
process *waiting; /* process waiting for input */
...

};
process *current; /* the currently running process */
queue<process *> active; /* linked list of other processes ready to run */
char get_char(terminal *term) {

if (term->keystrokes.empty()) {
term->waiting = current; /* sleep waiting for input */
switch_to(active.pop_head()); /* and switch to next active process */

}
return term->keystrokes.pop_head();

}

void interrupt(terminal *term, char key) {
term->keystrokes.push_tail(key); /* add keystroke to buffer */
if (term->waiting) {

active.push_tail(term->waiting); /* and wake up sleeping process */
term->waiting = NULL;

}
}

68

Context Switching on I/O
• Idea: when one process is waiting on

I/O, switch to another process
– I/O APIs already go through the OS, so

context switching is easy
• Problems:
– Some apps don’t have any I/O for long

periods of time

69

Preemptive Context Switching
• So far, our processes will not switch to

another process until some action is taken
– e.g. an API call or an I/O interrupt

• Idea: use a timer interrupt to force context
switching at set intervals
– Interrupt handler runs at a fixed frequency to

measure how long a process has been running
– If it’s been running for some max duration

(scheduling quantum), the handler switches to
the next process

• Problems:
– Requires hardware support (a programmable

timer)
• Thankfully, this is built-in to most modern CPUs

70

• Programs
• Processes
• Context Switching
• Protected Mode Execution
• Inter-process
Communication
• Threads

71

Process Isolation
• At this point, we can execute multiple

processes concurrently
• Problem: how do you stop processes

from behaving badly?
– Overwriting kernel memory
– Reading/writing data from other

processes
– Disabling interrupts
– Crashing the whole computer
– Etc. 72

Thought Experiment
• How can we implement execution with

limited privilege?
– Use an interpreter or a simulator

• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript, Java, …

• However, interpreters and simulators are
slow

• How do we go faster?
– Run the unprivileged code directly on the CPU

73

• Most modern CPUs support protected mode

Protected Mode

Ring 0
Kernel

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

• x86 CPUs support three
rings with different
privileges
– Ring 0: OS kernel
– Ring 1, 2: device drivers
– Ring 3: userland

• Most OSes only use rings 0
and 3

• What about hypervisors? 74

Real vs. Protected
• On startup, the CPU starts in 16-bit

real mode
– Protected mode is disabled
– Assumes segment:offset addressing

• Typically, bootloader switches CPU to
protected mode

mov eax, cr0
or eax, 1 ; set bit 1 of CR0 to 1  
 ; enables pmode
mov cr0, eax

75

Dual-Mode Operation
• Ring 0: kernel/supervisor mode
– Execution with the full privileges of the

hardware
– Read/write to any memory, access any I/O

device, read/write any disk sector, send/
read any packet

• Ring 3: user mode or “userland”
– Limited privileges
– Only those granted by the operating

system kernel

76

Protected Features
• What system features are impacted by

protection?
– Privileged instructions

• Only available to the kernel
– Limits on memory accesses

• Prevents user code from overwriting the kernel
– Access to hardware

• Only the kernel may directly interact with peripherals
– Programmable Timer Interrupt

• May only be set by the kernel
• Used to force context switches between processes

77

Privileged Instructions
• Examples?

– sti/cli – Enable and disable interrupts
– Any instruction that modifies the CR0 register

• Controls whether protected mode is enabled
– hlt – Halts the CPU

• What should happen if a user program
attempts to execute a privileged instruction?
– General protection (GP) exception gets thrown

by the CPU
– Control is transferred to the OS’s exception

handler
78

Changing Modes
• Applications often need to access the OS
– i.e. system calls
– Writing files, displaying on the screen,

receiving data from the network, etc…
• But the OS is ring 0, and apps are ring 3
• How do apps get access to the OS?
– Apps invoke system calls with an interrupt

• E.g. int 0x80
– int causes a mode transfer from ring 3 to

ring 0
79

Mode Transfer
1. Application executes trap (int) instruction

– EIP, CS, and EFLAGS get pushed onto the stack
– Mode switches from ring 3 to ring 0

2. Save the state of the current process
– Push EAX, EBX, …, etc. onto the stack

3. Locate and execute the correct syscall
handler

4. Restore the state of process
– Pop EAX, EBX, … etc.

5. Place the return value in EAX
6. Use iret to return to the process

– Switches back to the original mode (typically 3)

80

U
se

rl
an

d
Ke

rn
el

 M
od

e

System Call Example

81

IVT

Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
– Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS
handler
– Look up the handler in the IVT
– Switch from ring 3 to 0

3. OS executes the system call
– Save the processes state
– Use EAX to locate the system call
– Execute the system call
– Restore the processes state
– Put the return value in EAX

4. Return to the process with iret
– Pops EIP, CS, and EFLAGS
– Switches from ring 0 to 3

Syscall Table

printf()

OS Code

EIP

Alternative Syscall Mechanisms

• Thus far, all examples have used int/iret
• However, there are other syscall

mechanisms on x86
– sysenter/sysexit
– syscall/sysret

• The sys* instructions are much faster
than int/iret
– Jump directly to OS code, rather than

looking up handlers in the IVT
– Used by modern OSes, including the Linux

kernel
82

• Programs
• Processes
• Context Switching
• Protected Mode Execution
• Inter-process
Communication (IPC)
• Threads

83

Processes are not Islands
• Thus far:
– We can load programs as processes
– We can context switch between

processes
– Processes are protected from each other

• What if one or more processes want to
communicate with each other?

84

Browser core is
a process

Each tab is a process Each extension is a
process

Mechanisms for IPC
• Typcially, two ways of

implementing IPC
– Shared memory
• A region of memory that many

processes can all read/write
– Message passing
• Various OS-specific APIs
• Pipes
• Sockets
• Signals

85

0x0000

0xFFFF

Process 1

Process 2

Message
Queue

Kernel
Memory

IPC Examples

86

Message PassingShared Memory

0x0000

0xFFFF
Kernel

Memory

Process 1

Process 2

Shared
Memory

Write

Read

Write

Read

Posix Shared Memory API
• shm_open() – create and/or open a shared

memory page
– Returns a file descriptor for the shared page

• ltrunc() or ftruncate() – limit the size of
the shared memory page

• mmap() – map the memory page into the
processes address space
– Now you can read/write the page using a

pointer
• close() – close a file descriptor
• shm_unlink() – remove a shared page
– Processes with open references may still

access the page 87

/* Program to write some data in shared memory */
int main() {
 const int SIZE = 4096; /* size of the shared page */
 /* name of the shared page */
 const char * NAME = “MY_PAGE”;
 const char * msg = “Hello World!”;
 int shm_fd;
 char * ptr;

 shm_fd = shm_open(name, O_CREAT | O_RDRW, 0666);
 ftruncate(shm_fd, SIZE);
 ptr = (char *) mmap(0, SIZE, PROT_WRITE,
 MAP_SHARED, shm_fd, 0);
 sprintf(ptr, “%s”, msg);
 close(shm_fd);
 return 0;
}

88

/* Program to read some data from shared memory */
int main() {
 const int SIZE = 4096; /* size of the shared page */
 /* name of the shared page */
 const char * NAME = “MY_PAGE”;
 int shm_fd;
 char * ptr;

 shm_fd = shm_open(name, O_RDONLY, 0666);
 ptr = (char *) mmap(0, SIZE, PROT_READ,
 MAP_SHARED, shm_fd, 0);
 printf(“%s\n”, ptr);
 shm_unlink(shm_fd);
 return 0;
}

89

POSIX Message Queues
• Implementation of message passing
– Producers add messages to shared FIFO

queue
– Consumer(s) remove messages
– OS takes care of memory management,

synchronization
• Posix API:
– msgget() – creates a new message queue
– msgsnd() – pushes a message onto the

queue
– msgrcv() – pops a message from the queue

90

Pipes

• File-like abstraction for sending data between
processes
– Can be read or written to, just like a file
– Permissions controlled by the creating process

• Two types of pipes
– Named pipe: any process can attach as long as it

knows the name
• Typically used for long lived IPC

– Unnamed/anonymous pipe: only exists between a
parent and its children

• Full or half-duplex
– Can one or both ends of the pipe be read?
– Can one or both ends of the pipe be written? 91

Process 1

fd[0] write(fd[0])

fd[1] read(fd[1])

Pipe

Process 2

fd[0] write(fd[0])

fd[1] read(fd[1])

You’ve All Used Pipes

$ ps x | grep ssh
 3299 ? S 0:00 sshd: cbw@pts/0

92

Pipe the output from one process
to the input of another process

int main() { /* Program that passes a string to a child process through a pipe */
 int fd[2], nbytes;
 pid_t childpid;
 char string[] = "Hello, world!\n";
 char readbuffer[80];

 pipe(fd);
 if ((childpid = fork()) == -1) { perror("fork"); exit(1); }
 if (childpid == 0) {
 /* Child process closes up input side of pipe */
 close(fd[0]);
 /* Send "string" through the output side of pipe */
 write(fd[1], string, strlen(string) + 1);
 } else {
 /* Parent process closes up output side of pipe */
 close(fd[1]);
 /* Read in a string from the pipe */
 nbytes = read(fd[0], readbuffer, sizeof(readbuffer));
 printf("Received string: %s", readbuffer);
 }
 return(0);
}

93

Sockets for IPC
• Yes, the same sockets you use for

networking
• Server opens a listen socket, as usual
• Clients connect to this socket
– The server can check the clients IP and

drop connections from anyone other
than 127.0.0.1

• Send and receive packets as usual

94

Implementation Questions
• How are links established?
• Can a link be associated with more than

two processes?
• What is the capacity of each link?
• Are messages fixed size or variable size?
• Is the link unidirectional or bidirectional?
• Is the link synchronous or asynchronous?
• Does the API guarantee atomicity?
• What is the overhead of the API?

95

• Programs
• Processes
• Context Switching
• Protected Mode Execution
• Inter-process
Communication
• Threads

96

Are Processes Enough?
• At this point, we have the ability to

run processes
– And processes can communicate with

each other
• Is this enough functionality?
• Possible scenarios:
– A large server with many clients
– A powerful computer with many CPU

cores

97

Problems with Processes
• Process creation is heavyweight (i.e.

slow)
– Space must be allocated for the new process
– fork() copies all state of the parent to the

child
• IPC mechanisms are cumbersome
– Difficult to use fine-grained synchronization
– Message passing is slow

• Each message may have to go through the
kernel

98

Threads
• Light-weight processes that share the

same memory and state space
• Every process has at least one thread
• Benefits:
– Resource sharing, no need for IPC
– Economy: faster to create, faster to

context switch
– Scalability: simple to take advantage of

multi-core CPUs

99

100

Process-Level Shared Data

Code
Global
Data

File
Descriptors

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3

Process-Level Shared Data

Code
Global
Data

File
Descriptors

Registers Stack

Thread 1

Single-Threaded Process Multi-Threaded Process

Thread Implementations
• Threads can be implemented in two

ways:
1. User threads
• User-level library manages threads within a

single process
2. Kernel threads
• Kernel manages threads for all processes

101

POSIX Pthreads
• POSIX standard API for thread

creation
– IEEE 1003.1c
– Specification, not implementation
• Defines the API and the expected behavior
• … but not how it should be implemented

• Implementation is system dependent
– On some platforms, user-level threads
– On others, maps to kernel-level threads

102

Pthread API
• pthread_attr_init() – initialize the

threading library
• pthread_create() – create a new

thread
• pthread_exit() – exit the current

thread
• pthread_join() – wait for another

thread to exit
• Pthreads also contains a full range of

synchronization primitives
103

Pthread Example
 pthread_t tid; // id of the child thread
 pthread_attr_t attr; // initialization data
 pthread_attr_init(&attr);
 pthread_create(&tid, &attr, runner, 0);
 pthread_join(tid, 0);

void * runner(void * params) {
 …
 pthread_exit(0);
}

104

Linux Threads
• In the kernel, threads are just tasks
– Remember the task_struct from earlier?

• New threads created using the clone()
API
– Sort of like fork()
– Creates a new child task that copies the

address space of the parent
• Same code, same environment, etc.
• New stack is allocated
• No memory needs to be copied (unlike fork())

105

Thread Oddities
• What happens if you fork() a process

that has multiple threads?
– You get a child process with exactly one

thread
– Whichever thread called fork() survives

• What happens if you run exec() in a
multi-threaded process?
– All but one threads are killed
– exec() gets run normally

106

Advanced Threading
• Thread pools:
– Create many threads in advance
– Dynamically give work to threads from

the pool as it becomes available
• Advantages:
– Cost of creating threads is handled up-

front
– Bounds the maximum number of threads

in the process

107

Thread Local Storage
• Sometimes, you want

each thread to have its
own “global” data
– Not global to all threads
– Not local storage on the

stack
• Thread local storage

(TLS) allows each thread
to have its own space
for “global” variables
– Similar to static variables

108

Process-Level Shared Data

Code Global
Data

File
Descriptors

Registers

Stack

TLS

Registers

Stack

TLS

Registers

Stack

TLS

Thread 1 Thread 2 Thread 3

OpenMP
• Compiler extensions

for C, C++ that adds
native support for
parallel programming

• Controlled with
parallel regions
– Automatically creates

as many threads as
there are cores

109

#include <omp.h>

int main() {
 int i, N = 20;
 #pragma omp parallel
 {
 printf(“I am a parallel region\n”);
 }

 # pragma omp parallel for
 for (i = 0; i < N; i++)
 printf(“This is a parallel for loop
\n”);

 return 0;
}

Processes vs. Threads
• Threads are better if:
– You need to create new ones quickly, on-

the-fly
– You need to share lots of state

• Processes are better if:
– You want protection

• One process that crashes or freezes doesn’t
impact the others

– You need high security
• Only way to move state is through well-

defined, sanitized message passing interface
110

