CS 5600

Computer Systems

Lecture 6: Process Scheduling

* Scheduling Basics

* Simple Schedulers

* Priority Schedulers

* Fair Share Schedulers

* Multi-CPU Scheduling

e Case Study: The Linux Kernel

Setting the Stage

e Suppose we have:
— A computer with N CPUs
— P process/threads that are ready to run

 Questions we need to address:
— In what order should the processes be run?
— On what CPU should each process run?

Factors Influencing Scheduling

* Characteristics of the processes
— Are they I/O bound or CPU bound?

— Do we have metadata about the processes?
* Example: deadlines

— |s their behavior predictable?
e Characteristics of the machine
— How many CPUs?
— Can we preempt processes?
— How is memory shared by the CPUs?
e Characteristics of the user
— Are the processes interactive (e.g. desktop apps)...
— Or are the processes background jobs?

Basic Scheduler Architecture

* Scheduler selects from the ready processes, and
assigns them to a CPU

— System may have >1 CPU
— Various different approaches for selecting processes

* Scheduling decisions are made when a process:

1. Switches from running to waiting
, No preemption
2. Terminates

3. Switches from running to ready :I_ _
. o Preemption
4. Switches from waiting to ready

* Scheduler may have access to additional information

— Process deadlines, data in shared memory, etc.

Dispatch Latency

 The dispatcher gives control of the CPU to the
process selected by the scheduler

— Switches context
— Switching to/from kernel mode/user mode
— Saving the old EIP, loading the new EIP
* Warning: dispatching incurs a cost
— Context switching and mode switch are expensive

— Adds latency to processing times

* |t is advantageous to minimize process
switching

A Note on Processes & Threads

e Let’s assume that processes and threads are
equivalent for scheduling purposes

— Kernel supports threads
e System-contention scope (SCS)

— Each process has >=1 thread
 |f kernel does not support threads

— Each process handles it’s own thread scheduling
— Process contention scope (PCS)

Basic Process Behavior

* Processes alternate

between doing work Process 1 Process 2

and waitin :
& CPU 3 Execute :
— Work = CPU Burst Burst | i oo
* Process behavior varies | _[::fj
— |/O bound "' IS Execdute
. . Code
— CPU bound
* Expected CPU burst - J—
distribution is ':,_"
important for scheduler B Execute
design E Code :::
“ B D \Waiting
— Do you expect more CPU 3:: Sl for mutex
or I/0 bound processes? B Execute

Scheduling Optimization Criteria

 Max CPU utilization — keep the CPU as busy as possible
 Max throughput —# of processes that finish over time

 No scheduler can meet all these criteria
* Which criteria are most important depend on types of processes
and expectations of the system

 E.g.response time is key on the desktop
 Throughput is more important for MapReduce

* Fairness — all processes receive min/max fair CPU
resources

* Simple Schedulers
* Priority Schedulers
* Fair Share Schedulers

* Multi-CPU Scheduling
e Case Study: The Linux Kernel

First Come, First Serve (FCFS)

* Simple scheduler
— Processes stored in a FIFO queue
— Served in order of arrival

Burst | Arrival
Time Time

P1 24 0.000 P2 P3
P2 3 0.001

Time: 0 24 27 30
P3 3 0.002

* Turnaround time = completion time - arrival time
— P1=24;P2=27;,P3=30
— Average turnaround time: (24 + 27 + 30) / 3 = 27

11

The Convoy Effect

* FCFS scheduler, but the arrival order has changed

Burst | Arrival
Time Time

P1 24 0.002 P2 P3 P1
P2 3 0.000 Time: 0 3 6 30
P3 3 0.001

e Turnaround time: P1=30; P2=3;:P3=6
— Average turnaround time: (30+3 +6) /3 =13

— Much better than the previous arrival order!

* Convoy effect (a.k.a. head-of-line blocking)
— Long process can impede short processes
— E.g.: CPU bound process followed by I/0O bound process

Shortest Job First (SJF)

* Schedule processes based on the length of
their next CPU burst time

— Shortest processes go first

Burst | Arrival
Time | Time

P1 6 0
P2 8
P3 7
P4 3

Time: 0 3 9 16 24

o O O

* Average turnaround time: (3+16+9+24) /4=
13

* SJFis optimal: guarantees minimum average wait
time 13

Predicting Next CPU Burst Length

* Problem: future CPU burst times may be unknown

e Solution: estimate the next burst time based on
previous burst lengths

— Assumes process behavior is not highly variable

— Use exponential averaging
* t,—measured length of the nt" CPU burst
* T,,, — predicted value for n+1t CPU burst
* o — weight of current and previous measurements (0 < a < 1)
T, =at, +(1-a)T,

— Typically, o = 0.5

= = =
o N H

Burst Length
(0e]

Actual and Estimated CPU Burst Times

-®-True CPU Burst Length -@-Estimated Burst Length

Time

15

What About Arrival Time?

* SJF scheduler, CPU burst lengths are known

Burst | Arrival
Time Time

P1 24 0
P2 3 2

Time: 0 24 27 30
P3 3 3

e Scheduler must choose from available
processes

— Can lead to head-of-line blocking
— Average turnaround time: (24 + 25 +27) /3 =25.3

16

Shortest Time-To-Completion First (STCF)

* Also known as Preemptive SJF (PSJF)

— Processes with long bursts can be context
switched out in favor or short processes

Burst | Arrival
Time Time

- = U P1 P2 P3
P2 3 2

Time: 0 2 5 8 30
P3 3 3

e Turnaround time: P1=30; P2=3;P3=5
— Average turnaround time: (30 +3+5)/3=12.7

e STCF is also optimal
— Assuming you know future CPU burst times .

Interactive Systems

* Imagine you are typing/clicking in a desktop app
— You don’t care about turnaround time

— What you care about is responsiveness

» E.g. if you start typing but the app doesn’t show the text for
10 seconds, you’ll become frustrated

* Response time = first run time — arrival time

Response vs. Turnaround

e Assume an STCF scheduler

Burst | Arrival
Time Time
P1

P2
P3

6 0 o P2 P3
8 0

Time: 0 6 14
10 0

* Avg. turnaround time: (6 + 14 +24) /3 =14.7
* Avg. responsetime: (0+6+14)/3=6.7

24

19

Round Robin (RR)

* Round robin (a.k.a time slicing) scheduler is
designed to reduce response times

— RR runs jobs for a time slice (a.k.a. scheduling
guantum)

— Size of time slice is some multiple of the timer-
interrupt period

RR vs. STCF EEEE

P1 6 0
P2 8 0
P3 10 0

P1 P2 P3

STCF Time: 0 6 14 24

e Avg. turnaround time: (6 + 14 + 24) /3 =14.7
* Avg.responsetime:(0+6+14)/3=6.7

P1L P2 P3 P1 P2 P3 P1 P2 P3 P2 P3
Time:0 2 4 6 8 10 12 14 16 18 20 24

RR e 2 second time slices
e Avg. turnaround time: (14 + 20+ 24) /3 =19.3
* Avg.responsetime:(0+2+4)/3=2

21

Tradeoffs

RR ; STCF
+ Excellent response times + Achieves optimal, low
+ With N process and time slice of Q... turnaround times
+ No process waits more than (N-1)/Q

. . - Bad response times
time slices

- Inherently unfair
- Short jobs finish first

+ Achieves fairness
+ Each process receives 1/N CPU time

- Worst possible turnaround times
- If Qislarge = FIFO behavior

e Optimizing for turnaround or response time is a trade-off

e Achieving both requires more sophisticated algorithms

Selecting the Time Slice

Smaller time slices = faster response times
So why not select a very tiny time slice?

— E.g. 1ps

Context switching overhead

— Each context switch wastes CPU time (~10us)

— If time slice is too short, context switch overhead
will dominate overall performance

This results in another tradeoff
— Typical time slices are between 1ms and 100ms

Incorporating |/O

 How do you incorporate I/O waits into the scheduler?

— Treat time in-between 1/0 waits as CPU burst time

Total Burst | Wait | Arrival
STCF Time Time | Time | Time
Scheduler P1 22 5 5 0

P2 20 20 0 0

CPU

Disk
Time: 0 5 10 15 20 25 30 35 40 42

24

* Priority Schedulers
e Fair Share Schedulers

* Multi-CPU Scheduling
e Case Study: The Linux Kernel

Status Check

* Introduced two different types of schedulers
— SJIF/STCF: optimal turnaround time
— RR: fast response time

* Open problems:

— |ldeally, we want fast response time and turnaround

e E.g. a desktop computer can run interactive and CPU
bound processes at the same time

— SJF/STCF require knowledge about burst times

* Both problems can be solved by using
prioritization

Priority Scheduling

 We have already seen examples of priority
schedulers

— SJF, STCF are both priority schedulers
— Priority = CPU burst time
* Problem with priority scheduling
— Starvation: high priority tasks can dominate the CPU

e Possible solution: dynamically vary priorities
— Vary based on process behavior

— Vary based on wait time (i.e. length of time spent in
the ready queue)

Simple Priority Scheduler

e Associate a priority with each process
— Schedule high priority tasks first
— Lower numbers = high priority
— No preemption

Process | Burst Time | Arival Time | Prorty
» (]]

 Cannot automatically balance response vs. turnaround time

e Prone to starvation

P5 5 0 2

P2 P5 P1 P3 P4

Time:0 2 7 17 20 22

e Avg. turnaround time: (17+2+20+22+7)/5=13.6
* Avg.responsetime:(7+0+17+20+2)/5=9.2 28

Earliest Deadline First (EDF)

e Each process has a deadline it must finish by

* Priorities are assighed according to deadlines
— Tighter deadlines are given higher priority

Burst | Arrival | Deadline
Time | Time
P1 15 0 40

PL P2 P1 P3 P4 P3 Pl
0 4 /7 10 13 17 20 28

 EDF is optimal (assuming preemption)
e But, it’s only useful if processes have known deadlines

— Typically used in real-time OSes

29

Multilevel Queue (MLQ)

e Key idea: divide the ready queue in two

1. High priority queue for interactive processes
* RRscheduling

2. Low priority queue for CPU bound processes
 FCFS scheduling

 Simple, static configuration
— Each process is assigned a priority on startup
— Each queue is given a fixed amount of CPU time

e 80% to processes in the high priority queue
e 20% to processes in the low priority queue

process | Arival Time | priorty

MLQ Example - :
P3 0 1
P4 0 2
P5 1 2

80% High priority, RR 20% low priority, FCFS

P1 P2 P3 P1 P2 P3 P1 P2

P3 P1 P2 P3 P1 P2 P3 P1

Time:20 22 24 26 28 30 32 34 36

Time: 0

P2 P3 P1 P2 P3 P1 P2 P3 P4 PS5

Time:40 42 44 46 48 50 52 54 56

Problems with MLQ

e Assumes you can classify processes into high
and low priority

— How could you actually do this at run time?
— What of a processes’ behavior changes over time?
* i.e. CPU bound portion, followed by interactive portion
* Highly biased use of CPU time

— Potentially too much time dedicated to interactive
processes

— Convoy problems for low priority tasks

Multilevel Feedback Queue (MLFQ)

* Goals
— Minimize response time and turnaround time

— Dynamically adjust process priorities over time

* No assumptions or prior knowledge about burst times
or process behavior

* High level design: generalized MLQ
— Several priority queues

— Move processes between queue based on
observed behavior (i.e. their history)

First 4 Rules of MFLQ

Rule 1: If Priority(A) > Priority(B), A runs, B doesn’t
Rule 2: If Priority(A) = Priority(B), A & B run in RR
Rule 3: Processes start at the highest priority

Rule 4:

— Rule 4a: If a process uses an entire time slice while
running, its priority is reduced

— Rule 4b: If a process gives up the CPU before its time
slice is up, it remains at the same priority level

FQ Examples

nd Process Interactiv o

Blocked 8~ NN
Time:0 2 4 6 8 10 12 14 MU 0 2 26 8 10 12 14

/0 Bound and
CPU Bound
Processes

Time:0 2 4 6 8 10 12 14 35

Problems With MLFQ So Far...

High priority

processes
always take
e Starvation precedence
sleep(1ms) just before over low
time slice expires priority

Unscrupulous

process never

. gets demoted,

* Cheating monopolizes

CPU time

Time:0 2 4 6 8 10 12 14

36

MLFQ Rule 5: Priority Boost

* Rule 5: After some time period S, move all
processes to the highest priority queue

* Solves two problems:

— Starvation: low priority processes will eventually
become high priority, acquire CPU time

— Dynamic behavior: a CPU bound process that has
become interactive will now be high priority

Priority Boost Example

Starvation :(Priority Boost
Without Priority Boo With\Tiority Boost

oo [BN oo

TN

Time:0 2 4 6 8 10 12 14 Time:0 2 4 6 8 10 12 14 16 18

38

Revised Rule 4: Cheat Prevention

* Rule 4a and 4b let a process game the scheduler

— Repeatedly yield just before the time limit expires

* Solution: better accounting

— Rule 4: Once a process uses up its time allotment at a
given priority (regardless of whether it gave up the
CPU), demote its priority

— Basically, keep track of total CPU time used by each
process during each time interval S
* Instead of just looking at continuous CPU time

Preventing Cheating

sleep(1ms) just before Time allotment g Time allotment
time slice expires exhausted exhausted

Time:0 2 4 6 8 10 12 14 Time:0 2 4 6 8 10 R 14 16

Round robin

40

MLFQ Rule Review

Rule 1: If Priority(A) > Priority(B), A runs, B
doesn’t

Rule 2: If Priority(A) = Priority(B), A & B run in RR

Rule 3: Processes start at the highest priority

Rule 4: Once a process uses up its time allotment
at a given priority, demote it

Rule 5: After some time period S, move all
processes to the highest priority queue

Parameterizing MLFQ

* MLFQ meets our goals
— Balances response time and turnaround time
— Does not require prior knowledge about processes

* But, it has many knobs to tune
— Number of queues?
— How to divide CPU time between the queues?

— For each queue:
* Which scheduling regime to use?
* Time slice/quantum?

— Method for demoting priorities?
— Method for boosting priorities?

MLFQ In Practice

* Many OSes use MLFQ-like schedulers
— Example: Windows NT/2000/XP/Vista, Solaris, FreeBSD

e OSes ship with “reasonable” MLFQ parameters

— Variable length time slices
* High priority queues — short time slices
* Low priority queues — long time slices

— Priority O sometimes reserved for OS processes

lemg Advice

Mmz\‘- NS NN T T L o - N
o 52

File Options View

8 -

Processes‘Performance App history‘Startup‘Users Details Services

Name - PID Status User name CPU Memory (... Description a
AcroRd32.exe 5812 Running cbw 00 996 K Adobe Reader

AcroRd32.exe 6880 Running cbw 00 68,384 K Adobe Reader

Clarmsvc.exe 1392 Running SYSTEM 00 88 K Adobe Acrobat Update Service

® Taudiodg.exe 5072 Running LOCAL SER.. 00 9,496 K Windows Audio Device Graph Iso

DBTHSAmpPaISerVIC 3032 Running SYSTEM 00 144 K Intel® Centrino® Wireless Bluetc

re.. 6060 Running SYSTEM 00 92 K Intel(R) BlueTooth(R) HS Security
4272 Running cbw 00 73,264 K Google Chrome
End task 4436 Running cbw 00 47,932 K Google Chrome
End process tree 4588 Running cbw 04 121,180 K Google Chrome
Set priority » 4616 Running cbw 00 9,112 K Google Chrome
High Set affinity 4680 Running cbw 00 10,592 K Google Chrome
Abovelnormal A 4832 Runn?ng cbw 00 12,244 K Google Chrome
- E Normal UAC virtualization ::zg Eunn!ng CEW gg 323;22 i goog:e g:rome
i unning cbw , oogle Chrome
Below norml Create dump file 5496 Running cbw 00 6,568 K Google Chrome
Open file location 5632 Running cbw 00 824 K Google Chrome
Search online 6116 Running cbw 00 3,964 K Google Chrome
Properties 5792 Running cbw 00 968 K Google Chrome
Go to service(s) 144 Running cbw 00 772 K Google Chrome

44

* Fair Share Schedulers
* Multi-CPU Scheduling
e Case Study: The Linux Kernel

Status Check

 Thus far, we have examined schedulers
designed to optimize performance

— Minimum response times
— Minimum turnaround times

* MLFQ achieves these goals, but it’s complicated
— Non-trivial to implement

— Challenging to parameterize and tune

 What about a simple algorithm that achieves
fairness?

Lottery Scheduling

e Key idea: give each process a bunch of tickets
— Each time slice, scheduler holds a lottery
— Process holding the winning ticket gets to run

roesvnamne vocrse W1 s of 11 lces - 72%

- (75 BiE) e P2ran 3 of 11 slices — 27%
P2 0 75-99 (25 total)

P1 P2 P1 P1 P1 P2 P2 P1 P1 P1 P1

Time: 0 2 4 6 8 10 12 14 16 18 20 22

* Probabilistic scheduling

— Over time, run time for each process converges to the
correct value (i.e. the # of tickets it holds) .

Implementation Advantages

Very fast scheduler execution
— All the scheduler needs to do is run random()
— No need to manage O(log N) priority queues
No need to store lots of state

— Scheduler needs to know the total number of tickets
— No need to track process behavior or history

Automatically balances CPU time across processes

— New processes get some tickets, adjust the overall size of
the ticket pool

Easy to prioritize processes

— Give high priority processes many tickets

— Give low priority processes a few tickets

— Priorities can change via ticket inflation (i.e. minting tickets)

Randomness is

IS LOtte dUunef?clor:;)nsdhoor:r:Zfs . amortized over long
time scales

* Does lottery scheduling

achieve fairness? l_l_\l_l_\

I e et T
— Assume two processes

. - 08_
with equal tickets %
(@))
(1]

— Runtime of processes g o0s-
varies 2

] .] £ 0.4 -
— Unfairness ratio = 1 if %’

both processes finish at 0.2-
the same time

0.0 1 1 1
1 10 100 1000

Job Length
49

Stride Scheduling

e Randomness lets us build a simple and
approximately fair scheduler

— But fairness is not guaranteed
 Why not build a deterministic, fair scheduler?

* Stride scheduling
— Each process is given some tickets
— Each process has a stride = a big # / # of tickets
— Each time a process runs, its pass += stride

— Scheduler chooses process with the lowest pass to
run next

Stride Scheduling Example

Arrival | Tickets Stride P1 Who
Time (K =10000) pass runs? :
P1 0 100 100

P2 0 50 200
P3 0 250 40

P1: 100 of 400 tickets — 25%

P2: 50 of 400 tickets — 12.5%
P3: 250 of 400 tickets — 62.5%

e P1ran 2 of 8 slices — 25% v
e P2ran 1 of 8 slices—12.5%
e P3ran5 of 8 slices —62.5%

51

Lingering Issues

 Why choose lottery over stride scheduling?
— Stride schedulers need to store a lot more state

— How does a stride scheduler deal with new processes?
e Pass =0, will dominate CPU until it catches up

* Both schedulers require tickets assignment

— How do you know how many tickets to assign to each
process?

— This is an open problem

* Multi-CPU Scheduling
e Case Study: The Linux Kernel

Status Check

 Thus far, all of our schedulers have assumed a
single CPU core

 What about systems with multiple CPUs?

— Things get a lot more complicated when the
number of CPUs > 1

Symmetric Multiprocessing (SMP)

e >2 homogeneous processors
— May be in separate physical packages
* Shared main memory and system bus
* Single OS that treats all processors equally

System Bus

L2 Cache L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

55

Hyperthreading

 Two threads on a single CPU core

Non- Memory Memory
Hyperthreaded Thread 1 | eEER:TEY Stall CPU Busy Stall

Core

IS CPU Busy ME{“I‘?W CPU Busy Mgrﬁry
Hyperthreaded

Core Thread 2

56

Brief Intro to CPU Caches

* Process performance is linked to locality
— Ideally, a process should be placed close to its data

L] L]
| CU O JIODIC]] o (J olll=if=il
L/ / A CA \ O \ A L/ A \/

(L PRinirtes varimblescne W vallie e each “ereioryfetches
are fest :) to P2’s data P3’s data is slow |} are slow :{

System Bus P1 Data

)

P3 L2 Cac P1

NUMA and Affinity

 Non-Uniform Memory Access (NUMA) architecture

— Memory access time depends on the location of the data
relative to the requesting process

e Leads to cache affinity
— ldeally, processes want to stay close to their cached data

58

Single Queue Scheduling

* Single Queue Multiprocessor Scheduling (SQMS)
— Most basic design: all processes go into a single queue
— CPUs pull tasks from the queue as needed

— Good for load balancing (CPUs pull processes on
demand)

SO - | -1 [- [is] -+

P1

CPU1 PV

CPU 3 & 59

Problems with SQMS

 The process queue is a shared data structure
— Necessitates locking, or careful lock-free design

 SQMS does not respect cache affinity

SO [v« [s [] -
o I D
v A
2 A
s [0 I

Worst case scenario:

processes rarely run
on the same CPU

> Time 60

Multi-Queue Scheduling

 SQMS can be modified to preserve affinity

 Multiple Queue Multiprocessor Scheduling (MQMS)
— Each CPU maintains it’s own queue of processes

— CPUs schedule their processes independently

Queue 0 < CPUO
cuese 1

61

Advantages of MQMS

* Very little shared data

— Queues are (mostly) independent

* Respects cache affinity

wee: | o~ EIEIE

CPUO |

Queue 0 <

> Time

62

Shortcoming of MQMS

Idle the CPU? Unfair CPU Usage?

wee: (EE] « BAEAE - B
—> >

Time Time

e MQMS is prone to load imbalance due to:
— Different number of processes per CPU
— Variable behavior across processes

* Must be dealt with through process migration

63

Strategies for Process Migration

* Push migration

CPU 0/ Queue 0 <

“I have too many
CPU1/Queuel < processes, take one”

* Pull migration, a.k.a. work stealing

CPU 0/ Queue 0 < " ,
/ | don’t have enough

STVRY - [[

processes, give me one”

64

* Scheduling Basics

e Simple Schedulers

* Priority Schedulers

* Fair Share Schedulers

* Multi-CPU Scheduling

e Case Study: The Linux Kernel

Final Status Check

* At this point, we have looked at many:
— Scheduling algorithms
— Types of processes (CPU vs. I/0 bound)
— Hardware configurations (SMP)

e What do real OSes do?

e Case study on the Linux kernel
— Old scheduler: O(1)
— Current scheduler: Completely Fair Scheduler (CFS)
— Alternative scheduler: BF Scheduler (BFS)

O(1) Scheduler

* Replaced the very old O(n) scheduler
— Designed to reduce the cost of context switching
— Used in kernels prior to 2.6.23

* Implements MLFQ
— 140 priority levels, 2 queues per priority
* Active and inactive queue

* Process are scheduled from the active queue
* When the active queue is empty, refill from inactive queue

— RR within each priority level

Priority Assignment

 Static priorities — nice values [-20,19]
— Default=0
— Used for time slice calculation
 Dynamic priorities [0, 139]
— Used to demote CPU bound processes
— Maintain high priorities for interactive processes

— sleep() time for each process is measured
* High sleep time = interactive or I/O bound—> high priority

SNP / NUMA Support

* Processes are placed into a virtual hierarchy
— Groups are scheduled onto a physical CPU

— Processes are preferentially pinned to individual
cores

* Work stealing used for load balancing

Completely Fair Scheduler (CFS)

Replaced the O(1) scheduler
— In use since 2.6.23, has O(log N) runtime

Moves from MLFQ to Weighted Fair Queuing

— First major OS to use a fair scheduling algorithm
— Very similar to stride scheduling
— Processes ordered by the amount of CPU time they use

Gets rid of active/inactive run queues in favor of a
red-black tree of processes

CFS isn’t actually “completely fair”
— Unfairness is bounded O(N)

Red-Black Process Tree

* Tree organized according to amount of CPU
time used by each process
— Measured in nanoseconds, obviates the need for
time slices

 Add the
process back
to the tree

Left-most
process

WERENWEVS
e Rebalance

the tree

used the

least time
Scheduled
next

71

BF Scheduler

What does BF stand for?
— Look it up yourself

Alternative to CFS, introduced in 2009

— O(n) runtime, single run queue

— Dead simple implementation

Goal: a simple scheduling algorithm with
fewer parameters that need manual tuning
— Designed for light NUMA workloads

— Doesn’t scale to cores > 16

For the adventurous: download the BFS
patches and build yourself a custom kernel

