C Intro (Part)

Agenda

e Assert and Assignment 1

L

®

L

L

Pointers
Memory Model for C programs
Header Files

C preprocessor

Assert and Assignment 1

e Use assert.h library and assert for tests

Assert and Assignment 1

fact.c
#include <stdio.h>
#include <assert.h>

int fact(int n) {
1f (n == 1 | n == 0)
return 1;
} else {
return n * fact(n - 1);

int main(void)
// fact tests

assert(fact(0) == 1);
assert(fact(l) == 1);
assert(fact(5) == 120);

return 0;

Assert and Assignment 1

fact.c

#include <stdio.h>
finclude <assert.h> (1)

int fact(int n) |
if (n 1 I 0)
return 1;
} else

return n * facti(n - 1) :;

int main(void) {
// fact tests
assert (fact (0
assert(fact

e e e
I
o
y

(1
assert(fact (5

return 0;

1. include assert.h

N

S

Assert and Assignment 1

fact.c

#include <stdio.h>
#include <assert.h> (1)

int fact(int n) (2)
1f (n 1 || n 0) |
return 1;
else |
return n * fact(n - 1) ;

int main(void
// fact tes
assert(fact
assert(fact
assert(fact

return 0;

1. include assert.h

2. define all your functions before main

6/ 36

Assert and Assignment 1

fact.c

#include <stdio.h>
#include <assert.h> (1)

int fact({int n) { (2)
1t (n == 1 | n == 0) {
return 1;
} else |
return n * fact(n - 1);

int main({void) {
// fact tests (3)

f o
assert(fact(0Q) ==
assert (fact(l) ==

)
)
assert (fact(5) == 120);

return 0;

1. include assert.h
2. define all your functions before main

3. inside main for each functionm write tests using assert

7 /36

Pointers: Declaration and
Initialization

int *p
e pisapointertoan int

o think of it as: p is going to point to an integer value

e p s declared but not initialized!

Pointers: Declaration and
Initialization

int x = 3;
int *p = &x;

e \\Ve declare and initialize x to hold the value 3

¢ \/\/e declare and Initialize p to point to x

Pointers: Declaration and
Initialization

int x = 3;
int *p = &x;

Pointers: Declaration and
Initialization

What if | do not have a value to point to right now?

int *p = NULL;

e NULL Is special

Pointers: Declaration and
Initialization

int *p = NULL;

Pointers: Dereference

int x = 3;
int *p = &x;

printf ("The
printf ("The
printf ("The
printf ("The
printf ("The

variable x is %d\n", x);

F

pointer p points to %d\n",

pointer p 1is %p\n", p);

address
address

of x is %p\n",
of p is %p\n",

&xX) ;
&pP) ;

*P);

13/ 36

Pointers: Dereference

printf ("The
printf ("Th
printf ("Th
printf ("Th
printf ("The
Outputs:

variable x is %d\n", x);

r

pointer p points to %d\n",

pointer p is %p\n", p);

address
address

The variable x 1s 3
The pointer p points to 3
The pointer p is Oxbfal0l1958

The
The

address
address

of x 1s
of p 1s

of x 1is %Sp\n",
of p is %Sp\n",

Oxbfal1958
Oxbf961bas

&%) ;
&p) ;

*P) ;

14 /36

Pointers: Dereference

Qur original diagram

Pointers: Dereference

p holds the address of x, i.e., &x. That is what the arrow represented.

&x 3

Pointers: Dereference

Let's take one more step and replace the names p and x with thelr addresses.

Oxbf961ba8 Oxbfa01958

Oxbfa01958 3

Pointers: Dereference

What happens when we alter the value stored in x

int x = 3;
int *p = &x%;

printf ("The variable x is %d\n", x);
printf ("The pointer p points to %d\n",
printf ("The pointer p is %p\n", p);
printf ("The address of x is %p\n", &x);
printf ("The address of p is %$p\n", &p);

x = 500;

printf ("\n\nThe variable x is %d\n", x);

printf ("The pointer p points to %d\n",
printf ("The pointer p is %p\n", p);
printf ("The address of x is %p\n", &x);
printf ("The address of p is %p\n", &p);

*p);

F

*p) ;

Pointers: Dereference

What happens when we alter the value stored in x

Outputs

The variable x 1s 3

The pointer p points to 3

The pointer p is Oxbfa0l1958
The address of x 1s 0xbfa(01958
The address of p 1s 0xbf961lbas8

The variable x 1s 500

The pointer p points to 500
The pointer p is Oxbfa01958
The address of x 1s 0Oxbfa(0l1l958
The address of p 1s 0Oxbf961bas8

Pointers: Dereference

Let's go back to our images. What happened. We started with

Oxbf961ba8 Oxbfa01958

Oxbfa01958 3

Pointers: Dereference

Then we executed x=500 and we got

Oxbf961ba8

Oxbfa01958

Oxbfa01958

500

Pointers: Dereference

VWe mutated x; we deleted 3 and replaces it with 500. Any variapble that was

pointing to the address of x sees the update.

Oxbf961ba8

Oxbfa01958

Oxbfa01958

500

Dereferencing NULL

What happens when we run this code”

int *pl;
int *q = NULL;

printf ("What does pl point to? %d\n'",
printf ("What does g point to? %d\n",

*rl);

*q) ;

M ll-' .'IE_'.:
e R

Dereferencing NULL

What happens when we run this code”

int *pl;
int *q = NULL;

printf ("What does pl point to? %d\n", *pl);
printf ("What does g point to? %d\n", *q);

Qutputs

What does pl point to? -1079514593
zsh: segmentation fault ./a.out

24 / 36

Pointers and Arrays

e Arrays are formed by placing the elements contiguously in memory.

int array([4];

array[1l]; // is of type int

array; // is a pointer to the first array
element

int *p = (array + 1); // points to array[1l]
int x = array[1l]; // the wvalue at index 1

// what p points to!

p =p t+ 1; // moves p by one int to point to
array|[2]

oI~ EaT=!

Heap

e Space in memory that allows for dynamic allocation and deallocation.

¢ Request memory using void *malloc (size t size)

e Release memory using void free (void *block)

e Reuse memory using void *realloc(void *block, size t
size)

And we need a way to tell how much memory we need for each type!

e size t sizeof (type), looks like a function it is not!

® size t sizeof expression, itisan expression.

26 / 36

Heap and Stack

int al[1l000]; // stack allocated

int *b;
b = (int*) malloc (sizeof (int)
assert (b != NULL) ;

all00] = 7;
b[100]
array

7: // we can still use

* 1000) ;

[] to i1ndex the

free(b); // give the memory back!

Heap and Stack: function calls

Whiteboard!

Singly Linked List of int

¢ Design each node, what do we have to store?
¢ |ist needs to dynamically grow and shrink.

¢ Operations
1. Node *list create(int element)

m cregte anew listand add element

2. void list add(int element, Node *1list)
® gdd element as the firstitemto 1ist

3. int list get first(Node *1list)
= return the first item. List is unchanged

4, Node *list get rest (Node *1list)

m return the list without it's first item

Prototypes

¢ Functions need to be defined before use.

e A function prototype tells the compiler the signature. This is the declaration
of a function.

© Int total tax(int sum);

Header Files: Organizing code

e #include <stdio.h>-grab stdio.h and paste in here.

o Whereis stdio.h?

e \\e can make our own header files and include them using #include

"list.h"

o NOTE quotes instead of < >. Quotes mean relative 1o the source file.

Header Files: Organizing code

Header files define the interface to our module for clients

o functions and types

Clients

o include our header file

o prefix prototypes with extern (More on extern in a minute)

Implementors

o include the header file

o provide the implementation for each function prototype in the header
file

Java coders, header files kinda like Java interfaces.

Scope

e A .c fleis one compilation unit.

e \\e have seen local function variables.

e \ariables visible to all functions in a . c file.

o define once outside any function

o yse extern to declare the use of it inside a function

.'1.'1 P
N O

Scope

#include <stdio.h>

int max; //scope is the whole file

int 1s max (i1nt val) {

extern int max; /* refers to max above */

if (max > wval) {

return 0;
} else |

max = wval;
return 1:

int get max () {

extern int max; /* refers to max above */
return max;

34 /36

Scope

e [hereis also static

o can be used for variables and functions

® static 1nt x

o visible to functions in the same file as x

o invisible to function defined outside the file where x is defined

e similar use for functions

e think private to the compilation unit.

/ 36
T

Preprocessor

e Recall gcc -E7
e include other files, e.g, #include <stdio.h>
e define constants, e.g., #define SIZE 100

e gcc hasthe -1 argument that allows us to add more directories to search
for . h files.

e \WE can also

o free/remove a definition using #unde £
o checkifitis already define #ifdef ornot #ifndef
o if-else control flow with #if, #elif and #else

o gand more complex macros #define INC (x) x++

e MACROS perform substitution with arguments unevaluated. Be careful!

36 / 36

