
CS	5600
Computer	Systems

Project	2:	User	Programs	in	Pintos

User	Programs	in	Pintos

• Pintos	already	implements	a	basic	program	
loader
– Can	parse	ELF	executables	and	start	them	as	a	
process	with	one	thread

• Loaded	programs	can	be	executed
• But	this	system	has	problems:
– User	processes	crash	immediately	:(
– System	calls	have	not	been	implemented

2

Your	Goals
1. Implement	argument	passing
– Example:	“ls”	sort	of	works
– …	but	“ls –l	–a”	doesn’t	work
– You	must	pass	argv and	argc to	user	programs

2. Implement	the	Pintos	system	APIs
– Process	management:	exec(),	wait(),	exit()
– OS	shutdown:	halt()
– File	I/O:	open(),	read(),	write(),	close()
• Can	be	used	for	writing	to	the	screen	(write	stdout)
• …	and	reading	from	the	keyboard	(read	stdin)

3

Formatting	the	File	System

• In	this	project,	you	will	be	running	user	programs	
within	Pintos

• Thus,	you	must	format	a	file	system	to	store	
these	user	programs	on

$	pintos-mkdisk filesys.dsk --filesys-size=2
$	pintos	-p	../../examples/echo	-a	echo	-- -f	-q	run	'echo	x'

4

Total	size	of	
the	file	

system,	in	MB

Copy	the	‘echo’	
program	to	the	
Pintos	file	system

Format		the	
file	system

Program	Loading
• userprog/process.c contains	the	code	for	loading	ELF	files

/*	Executable	header.	This	appears	at	the	very	beginning	of	an	ELF	
binary.	*/
struct Elf32_Ehdr	{	…	}

/*	Program	header.	There	are	e_phnumof	these,	starting	at	file	offset	
e_phoff.	*/
struct Elf32_Phdr	{	…	}

/*	Loads	an	ELF	executable	from	FILE_NAME	into	the	current	thread.
Stores	the	executable's	entry	point	into	*EIP
and	its	initial	stack	pointer	into	*ESP.
Returns	true	if	successful,	false	otherwise.	*/

bool load	(const char *file_name,	void (**eip)	(void),	void	**esp)	{	…	}

5

Setting	Up	The	Stack
• userprog/process.c

/*	Create	a	minimal	stack	by	mapping	a	zeroed	page	at	the	top	of	user	virtual	
memory.	*/
staticbool setup_stack (void **esp)	{
uint8_t	*kpage;
bool success	=	false;

kpage =	palloc_get_page (PAL_USER	|	PAL_ZERO);
if (kpage !=	NULL)	{

success	=	install_page (((uint8_t	*)	PHYS_BASE)	- PGSIZE,	kpage,	true);
if (success)	*esp =	PHYS_BASE;
else palloc_free_page (kpage);

}
return	success;

}
6

At	a	minimum,	you	will	need	to	place	
argc and	*argv on	the	initial	stack,	
since	they	are	parameters	to	main()

Program	Loading	Flowchart

7

process_execute() thread_create() start_process()

load()

file_read()

load_segment()

validate_segment()

install_page()

setup_stack()

install_page()

Start	the	new	
process

(1)

(1)

(2)

(2)

Parse	cmd line	args,	pass	to	load()

Pass	the	cmd line	args
to	the	new	process	on	

the	stack

Syscalls in	Pintos
• Pintos	uses	int 0x30	for	system	calls
• Pintos	has	code	for	dispatching	syscalls from	
user	programs
– i.e.	user	processes	will	push	parameters	onto	the	
stack	and	execute	int 0x30

• In	the	kernel,	Pintos	will	handles	int 0x30	by	
calling	syscall_handler()	in	userprog/syscall.c

static void syscall_handler (struct intr_frame *f)	{
printf ("system	call!\n");
thread_exit ();

} 8

Syscalls from	the	user	process
• lib/user/syscall.h
– Defines	all	the	syscalls that	user	programs	can	use

• lib/user/syscall.c

void halt	(void)	{
syscall0	(SYS_HALT);

}

void exit	(int status)	{
syscall1	(SYS_EXIT,	status);

}

9

pid_t exec	(const char *file)	{
return (pid_t)	syscall1	(SYS_EXEC,	file);

}

These	are	syscalls.	They	are	implemented	
in	the	kernel,	not	in	userland.

Using	int 0x30	to	Enter	the	Kernel
• lib/user/syscall.c

/*	Invokes	syscallNUMBER,	passing	argument	ARG0,	and	returns	the
return	value	as	an	̀ int'.	*/

#define	syscall1(NUMBER,	ARG0)																																											\
({																																																															\
int retval;																																																				\
asm volatile																																																			\
("pushl%[arg0];	pushl%[number];	int $0x30;	addl $8,	%%esp" \
:	"=a"	(retval)																																											\
:	[number]	"i"	(NUMBER),																																		\
[arg0]	"g"	(ARG0)																																							\
:	"memory");																																														\

retval;																																																								\
}) 10

On	the	Kernel	Side…
• userprog/syscall.c

void syscall_init (void)	{
intr_register_int (0x30,	3,	INTR_ON,

syscall_handler,	"syscall");
}

static void syscall_handler (struct intr_frame *f)	{
printf ("system	call!\n");
thread_exit ();

}

11

Called	during	main(),	
sets	syscall_handler()	
to	be	run	whenever	int

0x30	is	received

Example	Syscall Flowchart	(exit)

12

User	Program

exit()

syscall1()

/lib/user/syscall.c

/threads/intr-stubs.S

intr30_stub()

intr_entry()

intr_handler()

/threads/interrupt.c

syscall_handler()

/userprog/syscall.c

exit()

User	Space Kernel	Space

intr_exit()

Your	changes	
will	almost	all	
be	in	here

Other	Things	Pintos	Gives	You
• Basic	virtual	memory	management
– User	processes	live	in	virtual	memory,	cannot	
access	the	kernel	directly

– Kernel	may	access	all	memory
– You	will	enhance	this	in	Project	3

• Trivial	filesystem implementation
– Can	store	user	programs
– You	will	enhance	this	in	Project	4

13

Key	Challenges

• Having	the	kernel	read/write	memory	in	user	
processes
– Necessary	for	reading	API	parameters	from	the	
user	stack
• E.g.	a	string	passed	via	a	pointer

– Need	to	understand	the	virtual	memory	system
• Handling	concurrent	processes
– Remember,	processes	can	call	exec()

• Handling	file	descriptors	and	standard	I/O

14

Modified	Files

• threads/thread.c 13	
• threads/thread.h 26
• userprog/exception.c 8	
• userprog/process.c 247
• userprog/syscall.c 468
• userprog/syscall.h 1	
• 6	files	changed,	725	insertions(+),	38	
deletions(-)

15

Setting	up	
argv and	argc

Implementing	
syscalls

