
CS	5600
Computer	Systems

Lecture	7:	Virtual	Memory



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

2



Main	Memory

• Main	memory	is	conceptually	very	simple
– Code	sits	in	memory
– Data	is	either	on	a	stack	or	a	heap
– Everything	gets	accessed	via	pointers
– Data	can	be	written	to	or	read	from	long	term	
storage

• Memory	is	a	simple	and	obvious	device
– So	why	is	memory	management	one	of	the	most	
complex	features	in	modern	OSes?	

3



Protection	and	Isolation

• Physical	memory	does	
not	offer	protection or	
isolation

40x00000000

0xFFFFFFFF
Kernel	Memory

Process	1
w/	Secret	Data

Physical	Memory

Evil	ProcessI’m	in	your	
process,	stealing	

your	data	;)

Oh	sorry,	I	didn’t	
mean	to	overwrite	
your	task_structs ;)



Compilation	and	Program	Loading

• Compiled	programs	include	
fixed	pointer	addresses

• Example:
000FE4D8	<foo>:
…
000FE21A: push	eax
000FE21D: push	ebx
000FE21F: call	0x000FE4D8
• Problem:	what	if	the	
program	is	not	loaded	at	
corresponding	address?

50x00000000

0xFFFFFFFF
Kernel	Memory

Process	1

Physical	Memory

Process	2

Addr of	foo():	
0x000FE4D8

Addr of	foo():	
0x0DEB49A3



Physical	Memory	has	Limited	Size

• RAM	is	cheap,	but	
not	as	cheap	as	solid	
state	or	cloud	
storage

• What	happens	when	
you	run	out	of	RAM?

60x00000000

0xFFFFFFFF
Kernel	Memory

Process	1

Process	2

Process	3

Process	4

Process	5



Physical	vs.	Virtual	Memory
• Clearly,	physical	memory	has	limitations
– No	protection	or	isolation
– Fixed	pointer	addresses
– Limited	size
– Etc.

• Virtualization	can	solve	these	problems!
– As	well	as	enable	additional,	cool	features

7



A	Toy	Example
• What	do	we	mean	by	virtual	memory?
– Processes	use	virtual (or	logical)	addresses
– Virtual	addresses	are	translated	to	physical	addresses

0x0000

0xFFFF Kernel	
Memory

Process	1

Physical	Memory
(Reality)

Process’	View	of
Virtual	Memory

0x0000

0xFFFF

Process	2

Process	3

Process	1

All	the	memory	
belongs	to	me!

I	am	master	of	all	
I	survey!

Physical	Address

Virtual	Address

Magical	Address	
Translation	Black	Box



Implementing	Address	Translation
• In	a	system	with	virtual	memory,	each	memory	
access	must	be	translated

• Can	the	OS	perform	address	translation?
– Only	if	programs	are	interpreted

• Modern	systems	have	hardware	support	that	
facilitates	address	translation
– Implemented	in	the	Memory	Management	Unit	
(MMU)	of	the	CPU

– Cooperates	with	the	OS	to	translate	virtual	addresses	
into	physical	addresses

9



Virtual	Memory	Implementations
• There	are	many	ways	to	implement	an	MMU
– Base	and	bound	registers
– Segmentation
– Page	tables
– Multi-level	page	tables

• We	will	discuss	each	of	these	approaches
– How	does	it	work?
–What	features	does	it	offer?
–What	are	the	limitations?

10

Old,	simple,	limited	functionality

Modern,	complex,	lots	of	
functionality



Goals	of	Virtual	Memory
• Transparency
– Processes	are	unaware	of	virtualization

• Protection	and	isolation
• Flexible	memory	placement
– OS	should	be	able	to	move	things	around	in	memory

• Shared	memory	and	memory	mapped	files
– Efficient	interprocess communication
– Shared	code	segments,	i.e.	dynamic	libraries

• Dynamic	memory	allocation
– Grow	heaps	and	stacks	on	demand,	no	need	to	pre-allocate	
large	blocks	of	empty	memory

• Support	for	sparse	address	spaces
• Demand-based	paging
– Create	the	illusion	of	near-infinite	memory

11



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

12



Base	and	Bounds	Registers
• A	simple	mechanism	for	address	translation
• Maps	a	contiguous	virtual	address	region	to	a	
contiguous	physical	address	region

13
0x0000

0xFFFF Kernel	
Memory

Process	1

Physical	Memory

0x00FF

0x10FF
Process	1

Process’	View	of
Virtual	Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000



Base	and	Bounds	Example

14

0x0000

0xFFFF Kernel	
Memory

Process	1

Physical	Memory

0x00FF

0x10FF
Process	1

Process’	View	of
Virtual	Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000

0x0023	mov eax,	[esp]

1)	Fetch	instruction
0x0023	+	0x00FF	=	0x0122

2)	Translate	memory	access
0x0F76	+	0x00FF	=	0x1075

3)	Move	value	to	register
[0x1075]	à eax

1

21

2



Protection	and	Isolation

15

0x0000

0xFFFF Kernel	
Memory

Process	1

Physical	Memory

0x00FF

0x10FF

Process	1

Process’	View	of
Virtual	Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000

0x0023	mov eax,	[0x4234]

1)	Fetch	instruction
0x0023	+	0x00FF	=	0x0122

2)	Translate	memory	access
0x4234	+	0x00FF	=	0x4333
0x4333	>	0x10FF

(BASE	+	BOUND)
Raise	Protection	Exception!

1

2

1

2



Implementation	Details

• BASE	and	BOUND	are	protected	registers
– Only	code	in	Ring	0	may	modify	BASE	and	BOUND
– Prevents	processes	from	modifying	their	own	sandbox

• Each	CPU	has	one	BASE	and	one	BOUND	register
– Just	like	ESP,	EIP,	EAX,	etc…
– Thus,	BASE	and	BOUND	must	be	saved	a	restored	
during	context	switching

16



Base	and	Bound	Pseudocode
1. PhysAddr =	VirtualAddress +	BASE
2. if (PhysAddr >=	BASE	+	BOUND)
3. RaiseException(PROTECTION_FAULT)
4. Register	=	AccessMemory(PhysAddr)

17



• Simple	hardware	implementation
• Simple	to	manage	each	process’	
virtual	space

• Processes	can	be	loaded	at	
arbitrary	fixed	addresses

• Offers	protection	and	isolation
• Offers	flexible	placement	of	data	
in	memory

Advantages	of	Base	and	Bound

180x00000000

0xFFFFFFFF
Kernel	Memory

Process	1

Physical	Memory

Process	2

I’m	loaded	at	
address	0x00AF

No,	I’m	loaded	at	
address	0x00AF

Previous	BASE	à 0x00FF
New	BASE	à 0x10A0



Limitations	of	Base	and	Bound
• Processes	can	overwrite	
their	own	code
– Processes	aren’t	protected	
from	themselves

• No	sharing	of	memory
– Code	(read-only)	is	mixed	in	
with	data	(read/write)

• Process	memory	cannot	
grow	dynamically
– May	lead	to	internal	
fragmentation

190x00000000

0xFFFFFFFF
Kernel	Memory

/bin/bash

Physical	Memory

/bin/bash

Code

Code

Data

DataCode	is	duplicated	
in	memory	:(



Internal	Fragmentation
• BOUND	determines	the	max	
amount	of	memory	available	
to	a	process

• How	much	memory	do	we	
allocate?
– Empty	space	leads	to	internal	
fragmentation

• What	if	we	don’t	allocate	
enough?
– Increasing	BOUND	after	the	
process	is	running	doesn’t	help

20

Physical	Memory

Code

Heap

Stack

Wasted	space	=	internal	
fragmentation

Heap

Stack

Increasing	BOUND	
doesn’t	move	the	stack	
away	from	the	heap



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

21



Towards	Segmented	Memory
• Having	a	single	BASE	and	a	single	BOUND	means	
code,	stack,	and	heap	are	all	in	one	memory	region
– Leads	to	internal	fragmentation
– Prevents	dynamically	growing	the	stack	and	heap

• Segmentation is	a	generalization	of	the	base	and	
bounds	approach
– Give	each	process	several	pairs	of	base/bounds
• May	or	may	not	be	stored	in	dedicated	registers

– Each	pair	defines	a	segment
– Each	segment	can	be	moved	or	resized	independently

22



Segmentation	Details
• The	code	and	data	of	a	process	get	split	into	
several	segments
– 3	segments	is	common:	code,	heap,	and	stack
– Some	architectures	support	>3	segments	per	process

• Each	process	views	its	segments	as	a	contiguous	
region	of	memory
– But	in	physical	memory,	the	segments	can	be	placed	
in	arbitrary	locations

• Question:	given	a	virtual	address,	how	does	the	
CPU	determine	which	segment	is	being	
addressed?

23



Segments	and	Offsets
• Key	idea:	split	virtual	addresses	into	a	segment	
index	and	an	offset

• Example:	suppose	we	have	14-bit	addresses
– Top	2	bits	are	the	segment
– Bottom	12	bits	are	the	offset

• 4	possible	segments	per	process
– 00,	01,	10,	11	

24

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Offset



Separation	of	Responsibility
• The	OS	manages	segments	and	their	indexes
– Creates	segments	for	new	processes	in	free	physical	
memory

– Builds	a	table	mapping	segments	indexes	to	base	
addresses	and	bounds

– Swaps	out	the	tables	and	segment	registers	during	context	
switches

– Frees	segments	from	physical	memory

• The	CPU	translates	virtual	addresses	to	physical	
addresses	on	demand
– Uses	the	segment	registers/segment	tables	built	by	the	OS

25



Segmentation	Example

26

0x0000

0x3FFF

Process’	View	of
Virtual	Memory

Code

Segment Index Base Bound

CS (Code) 00 0x0020 0x0100

HS (Heap) 01 0xB000 0x0100

SS (Stack) 10 0x0400 0x0100

0x0023	mov eax,	[esp]
1)	Fetch	instruction
0x0023	(EIP)		- 00000000100011

0x0020	(CS)	+	0x0023	=	0x0043
2)	Translate	memory	access
0x2015	(ESP)	– 10000000010101

0x0400	(SS)	+ 0x0015	=	0x0415
0x1000

0x0000

0xFFFF
Kernel	
Memory

Physical	Memory

Code

Heap

Stack

Code

Heap

Stack

0x0020

0xB100
0xB000

0x0120
0x0400
0x0500

0x2000

0x3000

Heap

Stack



Segmentation	Pseudocode
1. //	get	top	2	bits	of	14-bit	VA
2. Segment	=	(VirtualAddress &	SEG_MASK)	>>	SEG_SHIFT
3. //	now	get	offset
4. Offset	=	VirtualAddress &	OFFSET_MASK
5. if (Offset	>=	Bounds[Segment])
6. RaiseException(PROTECTION_FAULT)
7. else
8. PhysAddr =	Base[Segment]	+	Offset
9. Register	=	AccessMemory(PhysAddr)

27



More	on	Segments
• In	the	previous	example,	we	use	a	14-bit	address	
space	with	2	bits	reserved	for	the	segment	index
– This	limits	us	to	4	segments	per	process
– Each	segment	is	212 =	4KB	in	size

• Real	segmentation	systems	tend	to	have
1. More	bits	for	the	segments	index	(16-bits	for	x86)
2. More	bits	for	the	offset	(16-bits	for	x86)

• However,	segments	are	course-grained
– Limited	number	of	segments	per	process	(typically	~4)

28



Segment	Permissions
• Many	CPUs	(including	x86)	support	
permissions	on	segments
– Read,	write,	and	executable

• Disallowed	operations	trigger	an	
exception
– E.g.	Trying	to	write	to	the	code	segment

29

0x0000

0x3FFF

Process	1’s	View	of
Virtual	Memory

Code

Index Base Bound Permissions

00 0x0020 0x0100 RX

01 0xB000 0x0100 RW

10 0x0400 0x0100 RW
11 0xE500 0x100 R

0x1000

0x2000

0x3000

Heap

Stack

.rodata



x86	Segments
• Intel	80286	introduced	segmented	memory
– CS	– code	segment	register
– SS	– stack	segment	register
– DS	– data	segment	register
– ES,	FS,	GS	– extra	segment	registers

• In	16-bit	(real	mode)	x86	assembly,	
segment:offsetnotation	is	common
mov [ds:eax],	42 //	move	42	to	the	data	segment,	offset	

//	by	the	value	in	eax
mov [esp],	23 //	uses	the	SS	segment	by	default

30



x86	Segments	Today
• Segment	registers	and	their	associated	
functionality	still	exist	in	today’s	x86	CPUs

• However,	the	80386	introduced	page	tables
– Modern	OSes “disable”	segmentation
– The	Linux	kernel	sets	up	four	segments	during	bootup

31

Segment	Name Description Base Bound Ring

KERNEL_CS Kernel	code 0 4	GB 0

KERNEL_DS Kernel	data 0 4	GB 0

USER_CS User	code 0 4	GB 3

USER_DS User	data 0 4	GB 3

Pages	are	used	to	
virtualize	memory,	
not	segments

Used	to	label	pages	
with	protection	levels



What	is	a	Segmentation	Fault?
• If	you	try	to	read/write	memory	outside	a	
segment	assigned	to	your	process

• Examples:
– char buf[5];

strcpy(buf,	“Hello	World”);
return 0;	//	why	does	it	seg fault	when	you	return?

• Today	“segmentation	fault”	is	an	anachronism
– All	modern	systems	use	page	tables,	not	segments

32



Shared	Memory

33

0x0000

0x3FFF

Process	1’s	View	of
Virtual	Memory

Code

Index Base Bound

00 0x0020 0x0100

01 0xB000 0x0100

10 0x0400 0x0100

11 0xE500 0x0300

0x1000

0x2000

0x3000

Heap

Stack

0x0000

0x3FFF

Process	2’s	View	of
Virtual	Memory

0x1000

0x2000

0x3000

Code

Heap

Stack

Shared	
Data

Shared	
Data

Index Base Bound

00 0x0020 0x0100

01 0xC000 0x0100

10 0x0600 0x0100

11 0xE500 0x0300

Same	00	and	01	
physical	segments

Different	01	and	10	
physical	segments



Advantages	of	Segmentation	
• All	the	advantages	of	base	and	bound
• Better	support	for	sparse	address	spaces
– Code,	heap,	and	stack	are	in	separate	segments
– Segment	sizes	are	variable
– Prevents	internal	fragmentation

• Supports	shared	memory
• Per	segment	permissions
– Prevents	overwriting	code,	or	executing	data

34



External	Fragmentation
• Problem:	variable	size	segments	can	
lead	to	external	fragmentation
– Memory	gets	broken	into	random	size,	
non-contiguous	pieces

• Example:	there	is	enough	free	
memory	to	start	a	new	process
– But	the	memory	is	fragmented	:(

• Compaction	can	fix	the	problem
– But	it	is	extremely	expensive

35

Kernel	
Memory

Physical	Memory

Code

Heap

Stack

Code

Heap

Stack

Heap

Stack

Code

Code

Heap
Stack

Code

Heap

Stack



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

36



Towards	Paged	Memory
• Segments	improve	on	base	and	bound,	but	they	
still	aren’t	granular	enough
– Segments	lead	to	external	fragmentation

• The	paged	memory	model	is	a	generalization	of	
the	segmented	memory	model
– Physical	memory	is	divided	up	into	physical	pages	
(a.k.a.	frames)	of	fixed	sizes

– Code	and	data	exist	in	virtual	pages
– A	table	maps	virtual	pages	à physical	pages	(frames)

37



Toy	Example
• Suppose	we	have	a	64-byte	virtual	address	space
– Lets	specify	16	bytes	per	page

• How	many	bits	do	virtual	addresses	need	to	be	in	this	
system?
– 26 =	64	bytes,	thus	6	bit	addresses

Page	0
0

64

16

32

48

Page	1

Page	2

Page	3

Virtual	Memory

38

• How	many	bits	of	the	virtual	address	are	
needed	to	select	the	physical	page?
– 64	bytes	/	16	bytes	per	page	=	4	pages
– 22 =	4,	thus	2	bits	to	select	the	page

5 4 3 2 1 0

Virtual	Page	# Offset



Toy	Example,	Continued

Page	0
0

64

16

32

48

Page	1

Page	2

Page	3

Virtual	Memory

Page	0
0

64

16

32

48

Page	1

Page	2

Page	3

Physical	Memory

Page	4

128

96

112

Page	5

Page	6

Page	7

80

Virtual	Page	# Physical	Page	#

00	(0) 010	(2)

01	(1) 111	(7)

10	(2) 100	(4)

11	(3) 001	(1)

mov eax,	[21]

Translation
21	– 010101

117	– 1110101



Concrete	Example
• Assume	a	32-bit	virtual	and	physical	address	space
– Fix	the	page	size	at	4KB	(4096	bytes,	212)

• How	many	total	pages	will	there	be?
– 232 /	212 =	1048576 (220)

• How	many	bits	of	a	virtual	address	are	needed	to	
select	the	physical	page?
– 20	bits	(since	there	are	1048576	total	pages)

• Assume	that	each	page	table	entry	is	4	bytes	large
– How	big	will	the	page	table	be?
– 1048586	*	4	bytes	=	4MB	of	space

40

• Each	process	needs	its	own	page	table
• 100	processes	=	400MB	of	page	tables



Concrete	Example,	Continued
• Process	1	requires:

– 2 KB	for	code	(1	page)
– 7	KB	for	stack	(2	pages)
– 12	KB	for	heap	(3	pages)

41

0

232

Process	1’s	View	of
Virtual	Memory

Code

Heap

Stack

Heap
Heap

Stack

VPN PFN Valid?

0	…	i - 1 whatever 0

i d 1

i +	1	…	j	– 1 whatever 0

j b 1

j	+	1 f 1

j	+	2 e 1

j	+	3	…	k	- 1 whatever 0

k a 1

k	+	1 c 1

Page	i

Page	j
Page	j	+	1
Page	j	+	2

Page	k
Page	k	+	1

0

230
Kernel	
Memory

Physical	Memory

Code

Heap

Stack

Heap

Heap

Stack

Page	a

Page	b
Page	c

Page	d
Page	e

Page	f

The	vast	majority	of	
each	process’	page	

table	is	empty,	i.e.	the	
table	is	sparse

Heap

Heap

Page	j	+	3

Page	g



Page	Table	Implementation
• The	OS	creates	the	page	table	for	each	process
– Page	tables	are	typically	stored	in	kernel	memory
– OS	stores	a	pointer	to	the	page	table	in	a	special	
register	in	the	CPU	(CR3	register	in	x86)

– On	context	switch,	the	OS	swaps	the	pointer	for	the	
old	processes	table	for	the	new	processes	table

• The	CPU	uses	the	page	table	to	translate	virtual	
addresses	into	physical	addresses

42



x86	Page	Table	Entry
• On	x86,	page	table	entries	(PTE)	are	4	bytes

43

31	- 12 11	- 9 8 7 6 5 4 3 2 1 0

Page	Frame	Number	 (PFN) Unused G PAT D A PCD PWT U/S W P

• Bits	related	to	permissions
– W	– writable	bit	– is	the	page	writable,	or	read-only?
– U/S	– user/supervisor	bit	– can	user-mode	processes	
access	this	page?

• Hardware	caching	related	bits:	G,	PAT,	PCD,	PWT
• Bits	related	to	swapping
– P	– present	bit	– is	this	page	in	physical	memory?
– A	– accessed	bit	– has	this	page	been	read	recently?
– D	– dirty	bit	– has	this	page	been	written	recently?

We	will	revisit	these	
later	in	the	lecture…



Page	Table	Pseudocode
1. //	Extract	the	VPN	from	the	virtual	address
2. VPN	=	(VirtualAddress &	VPN_MASK)	>>	SHIFT
3. //	Form	the	address	of	the	page-table	entry	(PTE)
4. PTEAddr =	PTBR	+	(VPN	*	sizeof(PTE))
5. //	Fetch	the	PTE
6. PTE	=	AccessMemory(PTEAddr)
7. if (PTE.Valid ==	False)	//	Check	if	process	can	access	the	page
8. RaiseException(SEGMENTATION_FAULT)
9. else	if	(CanAccess(PTE.ProtectBits)	==	False)
10. RaiseException(PROTECTION_FAULT)
11. //	Access	is	OK:	form	physical	address	and	fetch	it
12. offset	=	VirtualAddress &	OFFSET_MASK
13. PhysAddr =	(PTE.PFN	<<	PFN_SHIFT)	|	offset
14. Register	=	AccessMemory(PhysAddr)

44



Tricks	With	Permissions	and	Shared	Pages

• Recall	how	fork()	is	implemented
– OS	creates	a	copy	of	all	pages	controlled	by	the	parent

• fork()	is	a	slooooow operation
– Copying	all	that	memory	takes	a	looooong time

• Can	we	improve	the	efficiency	of	fork()?
– Yes,	if	we	are	clever	with	shared	pages	and	
permissions!

45



Copy-on-Write
• Key	idea:	rather	than	copy	all	of	the	parents	
pages,	create	a	new	page	table	for	the	child	that	
maps	to	all	of	the	parents	pages
– Mark	all	of	the	pages	as	read-only
– If	parent	or	child	writes	to	a	page,	a	protection	
exception	will	be	triggered

– The	OS	catches	the	exception,	makes	a	copy	of	the	
target	page,	then	restarts	the	write	operation

• Thus,	all	unmodified	data	is	shared
– Only	pages	that	are	written	to	get	copied,	on	demand

46



Copy-on-Write	Example

47

0

230
Kernel	
Memory

Physical	Memory

Code

Heap

StackPage	a

Page	d

Page	f

Function VPN PFN Writable?

Code i d 0

Heap j b 1

Stack k a 1

Parents	Page	Table

Function VPN PFN Writable?

Code i d 0

Heap j b 0

Stack k a 0

Childs	Page	Table

0

0

Protection	Exception

Stack

Page	m1

1

Stackm



Zero-on-Reference

• How	much	physical	memory	do	we	need	to	
allocate	for	the	heap	of	a	new	process?
– Zero	bytes!

• When	a	process	touches	the	heap
– Segmentation	fault	into	OS	kernel
– Kernel	allocates	some	memory
– Zeros the	memory
• Avoid	accidentally	leaking	information!

– Restart	the	process

48



Advantages	of	Page	Tables	
• All	the	advantages	of	segmentation
• Even	better	support	for	sparse	address	spaces
– Each	page	is	relatively	small
– Fine-grained	page	allocations	to	each	process
– Prevents	internal	fragmentation

• All	pages	are	the	same	size
– Each	to	keep	track	of	free	memory	(say,	with	a	bitmap)
– Prevents	external	fragmentation

• Per	segment	permissions
– Prevents	overwriting	code,	or	executing	data

49



Problems	With	Page	Tables
• Page	tables	are	huge
– On	a	32-bit	machine	with	4KB	pages,	each	process’	
table	is	4MB

– On	a	64-bit	machine	with	4KB	pages,	there	are	240	
entries	per	table	à 240	*	4	bytes	=	4TB

– And	the	vast	majority	of	entries	are	empty/invalid!
• Page	table	indirection	adds	significant	overhead	
to	all	memory	accesses

50



Page	Tables	are	Slow
0x1024	mov [edi +	eax *	4], 0x0
0x1028	inc eax
0x102C	cmp eax,	0x03E8
0x1030	jne 0x1024

• How	many	memory	accesses	occur	during	each	
iteration	of	the	loop?
– 4	instructions	are	read	from	memory
– [edi +	eax *	4]	writes	to	one	location	in	memory
– 5	page	table	lookups	

• Each	memory	access	must	be	translated
• …	and	the	page	tables	themselves	are	in	memory

• Naïve	page	table	implementation	doublesmemory	
access	overhead 51



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

52



Problem:	Page	Table	Speed
• Page	tables	give	us	a	great	deal	of	flexibility	and	
granularity	to	implement	virtual	memory

• However,	page	tables	are	large,	thus	they	must	go	
in	RAM	(as	opposed	to	in	a	CPU	register)
– Each	virtual	memory	access	must	be	translated
– Each	translation	requires	a	table	lookup	in	memory
– Thus,	memory	overhead	is	doubled

• How	can	we	use	page	tables	without	this	memory	
lookup	overhead?	

53



Caching
• Key	idea:	cache	page	table	entries	directly	in	the	
CPU’s	MMU
– Translation	Lookaside Buffer	(TLB)
– Should	be	called	address	translation	cache

• TLB	stores	recently	used	PTEs
– Subsequent	requests	for	the	same	virtual	page	can	be	
filled	from	the	TLB	cache

• Directly	addresses	speed	issue	of	page	tables
– On-die	CPU	cache	is	very,	very	fast
– Translations	that	hit	the	TLB	don’t	need	to	be	looked	
up	from	the	page	table	in	memory

54



Example	TLB	Entry

• VPN	&	PFN	– virtual	and	physical	pages
• G	– is	this	page	global	(i.e.	accessible	by	all	
processes)?

• ASID	– address	space	ID
• D	– dirty	bit	– has	this	page	been	written	recently?
• V	– valid	bit	– is	this	entry	in	the	TLB	valid?
• C	– cache	coherency	bits	– for	multi-core	systems

55

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASIDGVirtual	Page	Number	(VPN)

VDCPhysical	Frame	Number	 (PFN)

More	on	this	later…



TLB	Control	Flow	Psuedocode
1. VPN	=	(VirtualAddress&	VPN_MASK)	>>	SHIFT
2. (Success,	TlbEntry)	=	TLB_Lookup(VPN)
3. if (Success	==	True)	//	TLB	Hit
4. if (CanAccess(TlbEntry.ProtectBits)	==	True)
5. Offset	=	VirtualAddress&	OFFSET_MASK
6. PhysAddr =	(TlbEntry.PFN<<	SHIFT)	|	Offset
7. AccessMemory(PhysAddr)
8. else
9. RaiseException(PROTECTION_FAULT)
10. else //	TLB	Miss
11. PTEAddr =	PTBR	+	(VPN	*	sizeof(PTE))
12. PTE	=	AccessMemory(PTEAddr)
13. if (PTE.Valid ==	False)
14. RaiseException(SEGMENTATION_FAULT)
15. else	if	(CanAccess(PTE.ProtectBits)	==	False)
16. RaiseException(PROTECTION_FAULT)
17. TLB_Insert(VPN,	PTE.PFN,	PTE.ProtectBits)
18. RetryInstruction() 56

Load	the	page	
table	entry	

from	memory,	
add	it	to	the	
TLB,	and	retry

Make	sure	
we	have	

permission,	
then	

proceed

Fast	Path

Slow	Path



Reading	an	Array	(no	TLB)
• Suppose	we	have	a	10KB	array	of	integers
– Assume	4KB	pages

• With	no	TLB,	how	many	memory	accesses	are	
required	to	read	the	whole	array?
– 10KB	/	4	=	2560	integers	in	the	array
– Each	requires	one	page	table	lookup,	one	memory	read
– 5120	reads,	plus	more	for	the	instructions	themselves

57



Reading	an	Array	(with	TLB)
• Same	example,	now	with	TLB
– 10KB	integer	array
– 4KB	pages
– Assume	the	TLB	starts	off	cold	
(i.e.	empty)

• How	many	memory	accesses	
to	read	the	array?
– 2560	to	read	the	integers
– 3	page	table	lookups
– 2563	total	reads
– TLB	hit	rate:	96%

58

Process	1’s	View	of
Virtual	Memory

Array	Data

Array	Data
Array	Data

Page	j
Page	j	+	1
Page	j	+	2

VPN PFN

j a

j	+	1 b

j	+	2 c

TLB



Locality
• TLB,	like	any	cache,	is	effective	because	of	locality
– Spatial	locality:	if	you	access	memory	address	x,	it	is	
likely	you	will	access	x	+	1 soon
• Most	of	the	time,	x and	x	+	1 are	in	the	same	page

– Temporal	locality:	if	you	access	memory	address	x,	it	
is	likely	you	will	access	x again	soon
• The	page	containing	x will	still	be	in	the	TLB,	hopefully

59



Be	Careful	With	Caching
• Recall:	TLB	entries	have	an	ASID	(address	space	
ID)	field.	What	is	this	for?
– Here’s	a	hint:	think	about	context	switching

60

VPN PFN

i d

j b

k a

Process	1’s	Page	Table

VPN PFN

i r

j u

k s

Process	2	Page	Table
VPN PFN

i d

J b

k a

TLB

VPNs	are	the	same,	
but	PFN	mappings	
have	changed!

• Problem:	TLB	entries	may	not	
be	valid	after	a	context	switch



Potential	Solutions
1. Clear	the	TLB	(mark	all	entries	as	invalid)	after	

each	context	switch
– Works,	but	forces	each	process	to	start	with	a	cold	

cache
– Only	solution	on	x86	(until	~2008)

2. Associate	an	ASID	(address	space	ID)	with	each	
process
– ASID	is	just	like	a	process	ID	in	the	kernel
– CPU	can	compare	the	ASID	of	the	active	process	to	

the	ASID	stored	in	each	TLB	entry
– If	they	don’t	match,	the	TLB	entry	is	invalid 61



Replacement	Policies
• On	many	CPUs	(like	x86),	the	TLB	is	managed	by	
the	hardware

• Problem:	space	in	the	TLB	is	limited	(usually	KB)
– Once	the	TLB	fills	up,	how	does	the	CPU	decide	what	
entries	to	replace	(evict)?

• Typical	replacement	policies:
– FIFO:	easy	to	implement,	but	certain	access	patterns	
result	in	worst-case	TLB	hit	rates

– Random:	easy	to	implement,	fair,	but	suboptimal	hit	
rates

– LRU (Least	Recently	Used):	algorithm	typically	used	in	
practice 62



Hardware	vs.	Software	Management
• Thus	far,	discussion	has	focused	on	hardware	
managed	TLBs	(e.g.	x86)	

PTE	=	AccessMemory(PTEAddr)
TLB_Insert(VPN,	PTE.PFN,	PTE.ProtectBits)

– CPU	dictates	the	page	table	format,	reads	page	table	
entries	from	memory

– CPU	manages	all	TLB	entries
• However,	software	managed	TLBs	are	also	
possible	(e.g.	MIPS	and	SPARC)

63



Software	Managed	TLB	Pseudocode
1. VPN	=	(VirtualAddress &	VPN_MASK)	>>	SHIFT
2. (Success,	TlbEntry)	=	TLB_Lookup(VPN)
3. if (Success	==	True)	//	TLB	Hit
4. if (CanAccess(TlbEntry.ProtectBits)	==	True)
5. Offset	=	VirtualAddress &	OFFSET_MASK
6. PhysAddr =	(TlbEntry.PFN<<	SHIFT)	|	Offset
7. Register	=	AccessMemory(PhysAddr)
8. else
9. RaiseException(PROTECTION_FAULT)
10. else //	TLB	Miss
11. RaiseException(TLB_MISS)

64

The	hardware	does	not:
1. Try	to	read	the	page	table
2. Add/remove	entries	from	the	TLB



Implementing	Software	TLBs
• Key	differences	vs.	hardware	managed	TLBs
– CPU	doesn’t	insert	entries	into	the	TLB
– CPU	has	no	ability	to	read	page	tables	from	memory

• On	TLB	miss,	the	OS	must	handle	the	exception
– Locate	the	correct	page	table	entry	in	memory
– Insert	the	PTE	into	the	TLB	(evict	if	necessary)
– Tell	the	CPU	to	retry	the	previous	instruction

• Note:	TLB	management	instructions	are	privileged
– Only	the	kernel	can	modify	the	TLB

65



Comparing	Hardware	and	Software	TLBs
Hardware	TLB

• Advantages
– Less	work	for	kernel	developers,	

CPU	does	a	lot	of	work	for	you

• Disadvantages
– Page	table	data	structure	format	

must	conform	to	hardware	
specification

– Limited	ability	to	modify	the	
CPUs	TLB	replacement	policies

Software	TLB
• Advantages

– No	predefined	data	structure	for	
the	page	table

– OS	is	free	to	implement	novel	
TLB	replacement	policies

• Disadvantages
– More	work	for	kernel	developers
– Beware	infinite	TLB	misses!

• OSes page	fault	handler	must	
always	be	present	in	the	TLB

66

Greater	flexibilityEasier	to	program



TLB	Summary
• TLBs	address	the	slowdown	associated	with	page	
tables
– Frequently	used	page	table	entries	are	cached	in	the	
CPU

– Prevents	repeated	lookups	for	PTEs	in	main	memory
• Reduce	the	speed	overhead	of	page	tables	by	an	
order	of	magnitude	or	more
– Caching	works	very	well	in	this	particular	scenario
– Lots	of	spatial	and	temporal	locality

67



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

68



Problem:	Page	Table	Size
• At	this	point,	we	have	solved	the	TLB	speed	issue
• However,	recall	that	pages	tables	are	large	and	
sparse
– Example:	32-bit	system	with	4KB	pages
– Each	page	table	is	4MB
– Most	entries	are	invalid,	i.e.	the	space	is	wasted

• How	can	we	reduce	the	size	of	the	page	tables?
– Many	possible	solutions
– Multi-layer	page	tables	are	most	common	(x86)

69



Simple	Solution:	Bigger	Pages
• Suppose	we	increase	the	size	of	pages
– Example:	32-bit	system,	4MB	pages
– 232 /	222 =	1024	pages	per	process
– 1024	*	4	bytes	per	page	=	4KB	page	tables

• What	is	the	drawback?
– Increased	internal	fragmentation
– How	many	programs	actually	have	4MB	of	code,	4MB	
of	stack,	and	4MB	of	heap	data?

70



Alternate	Data	Structures
• Thus	far,	we’ve	assumed	linear	page	tables
– i.e.	an	array	of	page	table	entries

• What	if	we	switch	to	an	alternate	data	structure?
– Hash	table
– Red-black	tree

• Why	is	switching	data	structures	not	always	
feasible?
– Can	be	done	if	the	TLB	is	software	managed
– If	the	TLB	is	hardware	managed,	then	the	OS	must	use	
the	page	table	format	specified	by	the	CPU

71



Inverted	Page	Tables
• Our	current	discussion	focuses	on	tables	that	map	
virtual	pages	to	physical	pages

• What	if	we	flip	the	table:	map	physical	pages	to	
virtual	pages?
– Since	there	is	only	one	physical	memory,	we	only	need	
one	inverted	page	table!

72

VPN PFN

i d

j b

k a

VPN PFN

i r

j u

k s

VPN PFN

i r

j u

k s

PFN VPN

i d

j b

k a

Standard	page	tables:	
one	per	process

Inverted	page	tables:	
one	per	system

Traditional	Tables Inverted	Table



Normal	vs.	Inverted	Page	Tables
• Advantage	of	inverted	page	table
– Only	one	table	for	the	whole	system

• Disadvantages
– Lookups	are	more	computationally	expensive

– How	to	implement	shared	memory?

73

VPN PFN

i d

j b

k a

PFN VPN

i d

j b

k a

VPN	serves	as	an	
index	into	the	
array,	thus	O(1)	
lookup	time

Traditional	Table Inverted	Table

Table	must	be	
scanned	to	locate	a	
given	VPN,	thus	
O(n)	lookup	time



Multi-Level	Page	Tables
• Key	idea:	split	the	linear	page	table	into	a	tree	of	
sub-tables
– Benefit:	branches	of	the	tree	that	are	empty	(i.e.	do	
not	contain	valid	pages)	can	be	pruned

• Multi-level	page	tables	are	a	space/time	tradeoff
– Pruning	reduces	the	size	of	the	table	(saves	space)
– But,	now	the	tree	must	be	traversed	to	translate	
virtual	addresses	(increased	access	time)

• Technique	used	by	modern	x86	CPUs
– 32-bit:	two-level	tables
– 64-bit:	four-level	tables 74



Multi-Level	Table	Toy	Example
• Imagine	a	small,	16KB	address	space
– 64-byte	pages,	14-bit	virtual	addresses,	8	bits	for	the	
VPN	and	6	for	the	offset

• How	many	entries	does	a	linear	page	table	need?
– 28 =	256	entries

750

214

Process	1’s	View	of
Virtual	Memory

Stack

Heap

Code Page	0

Page	4

Page	255 Assume	3	
pages	out	of	

256	total	pages	
are	in	use



From	Linear	to	Two-levels	Tables
• How	do	you	turn	a	linear	table	into	a	multi-level	table?
– Break	the	linear	table	up	into	page-size	units

• 256	table	entries,	each	is	4	bytes	large
– 256	*	4	bytes	=	1KB	linear	page	tables

• Given	64-byte	pages,	a	1KB	linear	table	can	be	divided	into	
16	64-byte	tables
– Each	sub-table	holds	16	page	table	entries

76

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual	Page	# OffsetPage	Directory	Index
(Table	Level	1)

Page	Table	Index
(Table	Level	2)



77

VPN PFN Valid?

00000000 a 1

... 0

00000100 b 1

… 0

11111111 c 1

Linear	Page	Table

0

214

Process	1’s	View	of
Virtual	Memory

Stack

Heap

Code Page	0

Page	4

Page	255

13 12 11 10 9 8 7 6 5 4 3 2 1 0

OffsetVirtual	Page	Number

253	tables	entries	
are	empty,	space	

is	wasted	:(



0

214

Process	1’s	View	of
Virtual	Memory

Stack

Heap

Code Page	0

Page	4

Page	255

13 12 11 10 9 8 7 6 5 4 3 2 1 0

OffsetPage	Directory
Index

Page	Table
Index

Index PFN Valid?

0000 a 1

… 0

0100 b 1

… 0

Page	Table	0000

Index PFN Valid?

0000 0

… 0

1111 c 1

Page	Table	1111

Index Valid?

0000 1

0001 0

0010 0

… 0

1111 1

Page	Directory

Empty	sub-tables	
don’t	need	to	be	

allocated	:)



32-bit	x86	Two-Level	Page	Tables

79

31 24 23 16 15 8 7 0

10-bits
PD	Index

10-bits
PT	Index

12-bits
Offset

Physical
Memory

CR3
Register

Page
Directory

Page
Tables



64-bit	x86	Four-Level	Page	Tables

80

31 24 23 16 15 8 7 0

9-bits
PD1
Index

9-bits
PT	Index

12-bits
Offset

Physical
Memory

CR3
Register

Page
Directory	3

Page
Directories	2

63 56 55 48 47 40 39 32

9-bits
PD2
Index

9-bits
PD3
Index

Page
Directories	1

Page
Tables



Don’t	Forget	the	TLB
• Multi-level	pages	look	complicated
– And	they	are,	but	only	when	you	have	to	traverse	
them

• The	TLB	still	stores	VPN	à PFN	mappings
– TLB	hits	avoid	reading/traversing	the	tables	at	all

81



Multi-Level	Page	Table	Summary
• Reasonably	effective	technique	for	shrinking	the	
size	of	page	tables
– Implemented	by	x86

• Canonical	example	of	a	space/time	tradeoff
– Traversing	many	levels	of	table	indirection	is	slower	
than	using	the	VPN	as	an	index	into	a	linear	table

– But,	linear	tables	waste	a	lot	of	space

82



• Motivation	and	Goals
• Base	and	Bounds
• Segmentation
• Page	Tables
• TLB
• Multi-level	Page	Tables
• Swap	Space

83



Status	Check
• At	this	point,	we	have	a	full-featured	virtual	
memory	system
– Transparent,	supports	protection	and	isolation
– Fast	(via	TLBs)
– Space	efficient	(via	multi-level	tables)

• Are	we	done?
– No!

• What	if	we	completely	run	out	of	physical	
memory?
– Can	virtualization	help?

84



Swap	Space
• Key	idea:	take	frames	from	physical	memory	and	
swap	(write)	them	to	disk
– This	frees	up	space	for	other	code	and	data

• Load	data	from	swap	back	into	memory	on-
demand
– If	a	process	attempts	to	access	a	page	that	has	been	
swapped	out…

– A	page-fault	occurs	and	the	instruction	pauses
– The	OS	can	swap	the	frame	back	in,	insert	it	into	the	
page	table,	and	restart	the	instruction

85



Swapping	Example

86

• Suppose	memory	is	full
• The	user	opens	a	new	
program

• Swap	out	idle	pages	to	
disk

• If	the	idle	pages	are	
accessed,	page	them	
back	in	

0x0000

0xFFFF
Kernel	
Memory

Process	1

Process	2

Process	3

Process	4

Process	5

Active

Active

Active

Idle

Hard
Drive



All	Modern	OSes Support	Swapping
• On	Linux,	you	create	a	swap	partition along	with	
your	normal	ext3/4	filesystem
– Swapped	pages	are	stored	in	this	separate	partition

• Windows

87

This image cannot currently be displayed.



Implementing	Swap
1. Data	structures	are	needed	to	track	the	mapping	

between	pages	in	memory	and	pages	on	disk
2. Meta-data	about	memory	pages	must	be	kept
–When	should	pages	be	evicted	(swapped	to	disk)?
– How	do	you	choose	which	page	to	evict?

3. The	functionality	of	the	OSes page	fault	handler	
must	be	modified

88



x86	Page	Table	Entry,	Again
• On	x86,	page	table	entries	(PTE)	are	4	bytes

89

31	- 12 11	- 9 8 7 6 5 4 3 2 1 0

Page	Frame	Number	 (PFN) Unused G PAT D A PCD PWT U/S W P

• P	– present	bit	– is	this	page	in	physical	memory?
– OS	sets	or	clears	the	present	bit	based	on	its	swapping	
decisions
• 1	means	the	page	is	in	physical	memory
• 0	means	the	page	is	valid,	but	has	been	swapped	to	disk

– Attempts	to	access	an	invalid	page	or a	page	that	isn’t	
present	trigger	a	page	fault



Handling	Page	Faults
• Thus	far,	we	have	viewed	page	faults	as	bugs
– i.e.	when	a	process	tries	to	access	an	invalid	pointer
– The	OS	kills	the	process	that	generate	page	faults

• However,	now	handling	page	faults	is	more	
complicated
– If	the	PTE	is	invalid,	the	OS	still	kills	the	process
– If	the	PTE	is	valid,	but	present	=	0,	then

1. The	OS	swaps	the	page	back	into	memory
2. The	OS	updates	the	PTE
3. The	OS	instructs	the	CPU	to	retry	the	last	instruction

90



Page	Fault	Pseudocode
1. VPN	=	(VirtualAddress&	VPN_MASK)	>>	SHIFT
2. (Success,	TlbEntry)	=	TLB_Lookup(VPN)
3. if (Success	==	True)	//	TLB	Hit
4. if	(CanAccess(TlbEntry.ProtectBits)	==	True)
5. Offset	=	VirtualAddress&	OFFSET_MASK
6. PhysAddr =	(TlbEntry.PFN<<	SHIFT)	|	Offset
7. Register	=	AccessMemory(PhysAddr)
8. else RaiseException(PROTECTION_FAULT)
9. else //	TLB	Miss
10. PTEAddr =	PTBR	+	(VPN	*	sizeof(PTE))
11. PTE	=	AccessMemory(PTEAddr)
12. if	(PTE.Valid ==	False)	RaiseException(SEGMENTATION_FAULT)
13. if (CanAccess(PTE.ProtectBits)	==	False)
14. RaiseException(PROTECTION_FAULT)
15. if	(PTE.Present ==	True)	//	assuming	hardware-managed	TLB
16. TLB_Insert(VPN,	PTE.PFN,	PTE.ProtectBits)
17. RetryInstruction()
18. else	if (PTE.Present ==	False)	RaiseException(PAGE_FAULT) 91



When	Should	the	OS	Evict	Pages?
• Memory	is	finite,	so	when	should	pages	be	
swapped?

• On-demand	approach
– If	a	page	needs	to	be	created	and	no	free	pages	exist,	
swap	a	page	to	disk

• Proactive	approach
– Most	OSes try	to	maintain	a	small	pool	of	free	pages	
– Implement	a	high	watermark
– Once	physical	memory	utilization	crosses	the	high	
watermark,	a	background	process	starts	swapping	out	
pages 92



What	Pages	Should	be	Evicted?
• Known	as	the	page-replacement	policy
• What	is	the	optimal	eviction	strategy?
– Evict	the	page	that	will	be	accessed	furthest	in	the	future
– Provably	results	in	the	maximum	cache	hit	rate
– Unfortunately,	impossible	to	implement	in	practice

• Practical	strategies	for	selecting	which	page	to	swap	
to	disk
– FIFO
– Random
– LRU	(Least	recently	used)

• Same	fundamental	algorithms	as	in	TLB	eviction 93



Examples	of	Optimal	and	LRU

Optimal	(Furthest	in	the	Future)
Access Hit/Miss? Evict Cache	State

0 Miss 0

1 Miss 0,	1

2 Miss 0,	1,	2

0 Hit 0,	1,	2

1 Hit 0,	1,	2

3 Miss 2 0,	1,	3

0 Hit 0,	1, 3

3 Hit 0,	1,	3

1 Hit 0,	1,	3

2 Miss 3 0,	1, 2

0 Hit 0,	1,	2

LRU
Access Hit/Miss? Evict Cache	State

0 Miss 0

1 Miss 0,	1

2 Miss 0,	1,	2

0 Hit 0,	1,	2

1 Hit 0,	1,	2

3 Miss 2 0,	1,	3

0 Hit 0,	1, 3

3 Hit 0,	1,	3

1 Hit 0,	1,	3

2 Miss 0 1,	2,	3

0 Miss 3 0,	1,	2

Assume	the	cache	can	store	3	pages



95

When	memory	
accesses	are	random,	
its	impossible	to	be	
smart	about	caching	

• All	memory	accesses	are	to	100%	random	pages



96

LRU	does	a	better	job	
of	keeping	“hot”	
pages	in	RAM	than	
FIFO	or	random

• 80%	of	memory	accesses	are	for	20%	of	pages



97

• The	process	sequentially	accesses	one	memory	
address	in	50	pages,	then	loops

• When	the	cache	size	is	C	<	50,	
LRU	evicts	page	Xwhen	page	
X	+	C is	read

• Thus,	pages	are	not	in	the	
cache	during	the	next	
iteration	of	the	loop

When	C	>=	50,	all	pages	are	
cached,	thus	hit	rate	=	100%



Implementing	Historical	Algorithms
• LRU	has	high	cache	hit	rates	in	most	cases…
• …	but	how	do	we	know	which	pages	have	been	
recently	used?

• Strategy	1:	record	each	access	to	the	page	table
– Problem:	adds	additional	overhead	to	page	table	
lookups

• Strategy	2:	approximate	LRU	with	help	from	the	
hardware

98



x86	Page	Table	Entry,	Again
• On	x86,	page	table	entries	(PTE)	are	4	bytes

99

31	- 12 11	- 9 8 7 6 5 4 3 2 1 0

Page	Frame	Number	 (PFN) Unused G PAT D A PCD PWT U/S W P

• Bits	related	to	swapping
– A	– accessed	bit	– has	this	page	been	read	recently?
– D	– dirty	bit	– has	this	page	been	written	recently?
– The	MMU	sets	the	accessed	bit	when	it	reads	a	PTE
– The	MMU	sets	the	dirty	bit	when	it	writes	to	the	page	
referenced	in	the	PTE

– The	OS	may	clear	these	flags	as	it	wishes



Approximating	LRU
• The	accessed	and	dirty	bits	tell	us	which	pages	
have	been	recently	accessed

• But,	LRU	is	still	difficult	to	implement
– On	eviction,	LRU	needs	to	scan	all	PTEs	to	determine	
which	have	not	been	used

– But	there	are	millions	of	PTEs!
• Is	there	a	clever	way	to	approximate	LRU	without	
scanning	all	PTEs?
– Yes!

100



The	Clock	Algorithm
• Imagine	that	all	PTEs	are	arranged	in	a	circular	list
• The	clock	hand	points	to	some	PTE	P	in	the	list

101

function clock_algo() {

start = P;

do {

if (P.accessed == 0) {

evict(P);

return;

}

P.accessed = 0;

P = P.next;

} while (P != start);

evict_random_page();

}



Incorporating	the	Dirty	Bit
• More	modern	page	eviction	algorithms	also	take	
the	dirty	bit	into	account

• For	example:	suppose	you	must	evict	a	page,	and	
all	pages	have	been	accessed
– Some	pages	are	read-only	(like	code)
– Some	pages	have	been	written	too	(i.e.	they	are	dirty)

• Evict	the	non-dirty	pages	first
– In	some	cases,	you	don’t	have	to	swap	them	to	disk!
– Example:	code	is	already	on	the	disk,	simply	reload	it

• Dirty	pages	must	always	be	written	to	disk
– Thus,	they	are	more	expensive	to	swap

102



RAM	as	a	Cache
• RAM	can	be	viewed	as	a	high-speed	cache	for	
your	large-but-slow	spinning	disk	storage
– You	have	GB	of	programs	and	data
– Only	a	subset	can	fit	in	RAM	at	any	given	time

• Ideally,	you	want	the	most	important	things	to	be	
resident	in	the	cache	(RAM)
– Code/data	that	become	less	important	can	be	evicted	
back	to	the	disk

103


