
2/26/2017 20-1

Program Efficiency &

Introduction to Complexity Theory

When does implementation matter?
•There are SEVERAL algorithms that solve the SAME problem

 Need to decide which one to choose

2/26/2017 20-2

Problem Algorithms

Anagrams
One string is an anagram of
another if the second is a
rearrangement of the first

1. Checking Off
2. Sort and compare
3. Brute Force
4. Count and compare

Search
Retrieve information stored
within some data structure

1. Sequential Search
2. Binary Search

Sort
Put elements in a certain order

1. Bucket sort
2. Bubble sort
3. Merge sort
4. Quick sort

2/26/2017 20-3

Analysis of Execution Time
public static int indexOf(int[] arr, int val) {

int arrLen = arr.length;

for (int i = 0; i < arrLen; i++)

if (arr[i] == val)

return i;

return -1;

}

SkipSequential search
In a sequential search of an array:

• worst-case:

4n+4  complexity is linear

• best-case:

7  complexity is constant (independent of input size)

•average case:

•4n/2 +4 = 2n+4  complexity is linear

Why do you need to evaluate an algorithm?

•Find most optimal algorithm for solving given problem,
considering various factors and constraints:

•Execution time

•Execution space (choosing the correct data structure)

•Network bandwidth

•…

•Goal: How fast or slow the particular algorithm performs

Calculate time complexity of the algorithm

•Problem: Several factors impact the actual time

•Instruction set

•CPU

•Brand of compiler…
2/26/2017 20-4

To determine runtime complexity:

•Calculate T(n) (number of fundamental steps vs. problem size)

•Disregard constants

•Look how running time is affected when input size is quite large.

•Drop the terms that grow slowly (or do not grow at all) and only
keep the ones that grow fast as n becomes larger

•Examples:

•T(n) = 5n + 42

 the fastest growing term is n linear runtime complexity

•T(n) = 37n + 3n2 + 120

 the fastest growing term is n2
quadratic runtime complexity

2/26/2017 20-5

Asymptotic behavior

2/26/2017 20-6

Cost of operations:
Constant Time Ops

•Each take one foundamental time “step”:

•Simple variable declaration/initialization (double sum = 0.0;)

•Assignment of numeric or reference values (var = value;)

•Arithmetic operation (+, -, *, /, %)

•Array subscripting (a[index])

•Simple conditional tests (x < y, p != null)

•Operator new (NOT including constructor cost)

Note: new takes significantly longer than simple arithmetic or
assignment, but its cost is independent of the problem size

•CAUTION: watch out for method calls or constructor invocations
that look simple, but might be expensive

2/26/2017 20-7

Costs of Statements
•Sequential: S1; S2; … Sn

sum the costs of S1 + S2 + … + Sn

•Conditional: how long it might take to execute the code
if (condition) {S1;}

else {S2;}

max cost (S1, S2) + cost of evaluating the condition

•Loop:

Calculate cost of each iteration

Calculate number of iterations

 Total cost is the product of these

2/26/2017 20-8

Costs of Statements
Method Calls

•Cost for f(a, b, c) is

•Cost of actually calling the method (constant overhead)

+ cost of evaluating the arguments

+ cost of parameter passing (normally constant time in Java
for both numeric and reference values)

+ cost of executing the method body

2/26/2017 20-9

Analysis of Execution Time
public static int indexOf(int[] arr, int val) {

int arrLen = arr.length;

for (int i = 0; i < arrLen; i++)

if (arr[i] == val)

return i;

return -1;

}

The fundamental instructions:
•Assigning a value to a variable: 2 ‘step’ (int arrLen=arr.length)

+1 ‘step’ (int i = 0)

•Return statement : +1 ‘step’ (either i or -1)
•for loop : ?

Accessing array: 1 ‘step’ (arr[i])
Comparing two values: + 1 ‘step’ (arr[i] == val)
Inside () of for: + 2 ‘steps’ (i < arrLen; i++)

Different types of complexities

•The worst-case runtime complexity is

the maximum number of steps taken on any instance of size n.

•The best-case runtime complexity is

the minimum number of steps taken on any instance of size n.

•The average case runtime complexity is

an average number of steps taken on any instance of size n.

2/26/2017 20-10

2/26/2017 20-11

Analysis of Execution Time
public static int indexOf(int[] arr, int val) {

int n = arr.length;

for (int i = 0; i < n; i++)

if (arr[i] == val)

return i;

return -1;

}

In a sequential search of an array:

• worst-case: 4n+4

 complexity is linear

• best-case: 7

 complexity is constant (independent of input size)

•average case: 4n/2 +4 = 2n+4  complexity is linear

T(n)=
Outside for loop: 4 steps

+
(Inside for loop: 4 steps
*
Number of iterations: ?)

What about nested loop?
int m=0; //executed in constant time c1

// Outer loop - executed n times

for (int i = 0; i < n; i++)

// Inner loop - be executed n times

for(int j = 0; j < n; j++)

sum += i * j; //executed in constant time c2

Runtime complexity is quadratic

2/26/2017 20-12

Rule of thumb: Simple programs can be analyzed by counting
the nested loops of the program:
A single loop over n items  linear complexity
A loop within a loop  quadratic complexity
A loop within a loop within a loop yields  cubic complexity

What if number of iterations of one loop
depends on the counter of the other?

int i,k,sum = 0;

for (i = 0; i < n; i++)

for (j = 0; j < i; j++)

sum +=i * j;

Analyze inner and outer loops together :

0 + 1 + 2 + … + (n-1) = n(n-1)/2

 Quadratic complexity

2/26/2017 20-13

“big-O”

2/26/2017 20-14

constant

linear

nlogn

quadratic
exponential

2/26/2017

Complexity Classes

•Several common complexity classes (problem size n)

•Constant time: O(k) or O(1)

•Logarithmic time: O(log n) [Base doesn’t matter. Why?]

•Linear time: O(n)

•“n log n” time: O(n log n)

•Quadratic time: O(n2)

•Cubic time: O(n3)

•Exponential time: O(kn)

•O(nk) is often called polynomial time

Sequential search
•Locates a target value in an array/list by examining each element

from start to finish.

•On Average O(n)

•Example: Searching the array below for the value 42:

Notice that the array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

Binary search

•Locates a target value in a sorted array/list

•Algorithm: Examine the middle element of the array.

If it is too big, eliminate the right half of the array and repeat.

If it is too small, eliminate the left half of the array and repeat.

Else it is the value we are searching for, so stop

•Example: Searching the array below for the value 42:

•How many elements will it need to examine?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

What does this function do and what is its
complexity ?

int mystery (int x) {

if (x <= 0) throw new IllegalArgumentException();

if (x == 1) return 0;

return 1 + mystery (x / 2);

}

Try it with arguments of 4, 8 and 2.

Binary search runtime
•For an array of size N, it eliminates ½ until 1 element remains:

N, N/2, N/4, N/8, ..., 4, 2, 1

•How many divisions does it take?

•Think of it from the other direction:

•How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

•Call this number of multiplications "x".

2x = N

x = log2 N

 Binary search has logarithmic complexity - O(logN)

21-21

Picture the Execution

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All paths from the size N
case to a size 0 case are
the same length: 1+log2N

Any given run of binary
search will follow only
one path from the root
to some leaf

ArrayList vs. LinkedList* in Java

ArrayList
(dynamic array)

LinkedList*

get(int index)

Indexing
𝑂 (1) (main benefit) O(n)

add (E element)

Inserting
at the end

O(n) (dynamically growing)
O(1) (on average input)

O(1)

add (int index,

E element)

Inserting
at the index

O(n)
Unless at the end

𝑂(1) (index ==0,
main benefit)

O(n)

2/26/2017 20-23

* with head, tail, and size

ArrayList vs. LinkedList* in Java

ArrayList
(dynamic array)

LinkedList*

remove(int index)

Delete from index
𝑂(1)(index)

O(n)

𝑂(1) (index ==0,
index ==size ,
main benefit)

O(n)

2/26/2017 20-24

* with head, tail, and size

