
1/25/17 12-1

CSE	143	Java
Exceptions

Verifying	Validity	of	Input	Parameters
•A	non-private	method	should	always	perform	parameter	validation	
as	its	caller	is	out	of	scope	of	its	implementation

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
/** @param rate refresh rate, in frames per second.

* @throws IllegalArgumentException if rate <= 0 or
* rate > MAX_REFRESH_RATE. */

public void setRefreshRate(int rate) {

// Enforce specified precondition in public method
if (rate <= 0 || rate > MAX_REFRESH_RATE) throw new

IllegalArgumentException("Illegal rate: " + rate);

setRefreshInterval(1000/rate);

}

Preconditions	on	publicmethods	are	enforced	by	explicit	checks	that	
throw		particular,	specified	exceptions

1/25/17 12-2

1/25/17 12-3

Exception	Handling
Exceptions: represent	unusual	events	(as	well	as	errors)
•Finite	table	is	full;	cannot	add	new	element
•Attempt	to	open	a	file	failed

Problems:
• the	method	that	detects	the	error	does	not	know	how	to	
handle	it	(and	probably	should	not)	

• the	client	code	could	handle	the	error,	but	is	not	in	a	
position	to	detect	it

•Solution: method	detecting	an	error	throws an	exception;	
client	code	catches and	handles	it

1/25/17 12-4

Exceptions	as	Part	of	Method	Specifications
What	should	a	client	code	method	do	with	exception?
•Either	must	handle	it

void readSomeStuff() {
try {

readIt(); // potentially throws an Exception
}
catch (Exception e) {

handle
}

•Or	declare	that	it	can	potentially	throw	it
void readSomeStuff() throws Exception {

readIt();
}

1/25/17 12-5

try-catch
try	{

somethingThatMightBlowUp();
}	catch	(Exception	e)	{

recovery	code	– e,	the	exception	object,	is	a	“parameter”
}
ØExecute	try	block
ØIf	an	exception	is	thrown,	catch	block	can	either	process	the	
exception,	re-throw	it,	or	throw	another	exception

ØThrown	exceptions	terminate	throwing	method	and	all	methods	
that	called	it,	until	reaching	a	method	that	catches	the	exception	
(has	a	catch	block	whose	type	matches	the	exception)

ØIf	there	is	no	try/catch	à terminate	the	thread	(possibly	the	
program)

1/25/17 12-6

try-catch
•Can	have	several catch	blocks

try {attemptToReadFile();}
catch (FileNotFoundException e) {…}
catch (IOException e) {…}
catch (Exception e) { …}

•Semantics:	try	to	match	exception	parameters	in	order	until	one	
matches

•Need	to	go	from	more	specific	to	more	general	(why?)
•If	no	match	– exception	propagates	(gets	thrown)	to	calling	
method

•In	Java	SE	7	and	later,	a	single	catch	block	can	handle	more	than	
one	type	of	exception	:	

catch (FileNotFoundException | IOException | Exception e) {…}
• http://www.oracle.com/technetwork/articles/java/java7exceptions-486908.html

1/25/17 12-7

Throwable/Exception	Hierarchy

Checked

Unchecked

Checked:	are	exceptions	that	are	checked	at	the	compile	time	
•Represent	invalid	conditions	in	areas	outside	the	immediate	
control	of	the	program	(invalid	user	input,	database	problems,	
network	outages,	absent	files)

•Are	subclasses	of	Exception
• Method	must	establish	a	policy	for	all	checked	exceptions	thrown	
by	its	implementation	
Øeither	handle	them	somehow		
à catch	all	checked	exceptions	it	might	encounter	(try-catch)

Øor	pass	the	checked	exceptions	further	up	the	stack			
à declare	that	it	might	throw	them	(using	throws keyword)

1/25/17 12-8

Checked	vs	Unchecked	Exceptions

1/25/17 12-9

Checked	vs	Unchecked	Exceptions
Unchecked:	are	not	checked	at	the	compile	time.
•Represent	defects	in	the	program	(bugs)	
•Reflect	errors	in	program's	logic	from	which	it	is	not	possible	to		
recover	at	a	run	time	

•Often	invalid	arguments	passed	to	a	non-private method.

•Are	subclasses	of	RuntimeException,	and	are	usually	implemented	
using	IllegalArgumentException,	NullPointerException,	or	
IllegalStateException

•Method	is	NOT	obliged	to	establish	a	policy	for	the	unchecked	
exceptions	thrown	by	its	implementation
(almost	always	does	not	do	so)

• No	need	to	declare	anything	about	unchecked	exceptions
• Include	an	@throws	in	the	JavaDocs for	ones	specifically	thrown
• RuntimeException (unchecked)	is	itself	a	subclass	of	Exception
(checked).	
•Why	to	have	both	types?
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
• http://www.javamadesoeasy.com/2015/05/exceptions-top-60-interview-questions_16.html

1/25/17 12-10

Checked	vs	Unchecked	Exceptions

Writing	your	own	exception
/**

• Represents an exception thrown when an invalid value is
given for radius

*/

public class InvalidRadiusException extends RuntimeException {
/**

* {@inheritDoc}
*/

public InvalidRadiusException(String message) {
super(message);

}
}

Is	this	checked	or	unchecked	exception?

1/25/17 12-11

What	can	we	do	with	
InvalidRadiusException?

public class Circle extends AbstractShape {

/**

* Given a pin and a radius greater than 0, creates a circle

* @param pin the location of this circle's pin

* @param radius this circle's radius. The radius must be greater than 0

* @throws InvalidRadiusException if the radius is negative or zero

public Circle(Posn pin, Integer radius) {

super(pin);
if (radius <= 0) {

throw new InvalidRadiusException("Radius must be
> 0, given: " + radius);

}

this.radius = radius;
} // elided code

}
1/25/17 12-12

Do	we	need	to	handle	it?
•Since	InvalidRadiusException is	unchecked	(why?),																			
we	may	or	may	not	handle	it

•Example	of	how	to	handle:
Somewhere	inside	VERY	important	client	code:
try {

Circle myCircle = new Circle(new Pin(0,0), -2);
}

catch (InvalidRadiusException invalidRadius) {
ShowErrorMEssage errorMessage = new ShowErrorMessage

("We detected an incorrect value " +
"for myCircle. “ + "Please provide a
positive number.");

new Window(errorMessage).exit();

}

1/25/17 12-13

Always	be	VERY	descriptive	in	your	error	message	

