RECAP of Lectures 1&2

Maria Zontak

‘Is-a’ in Programming

Java, C++ and more provide direct support for “IS - A”:
* Class Inheritance - new class extends existing class
» Key for good object-oriented programming:

* Using the SAME code in MANY contexts = Reusable code
* Reduce bugs = Robust and maintainable

* Terminology:

Soniam

Superclass Dad iam

Subclass

X 4
Inheritance %
) !
04-

11917 2

Vocabulary and Principles

Original/Extended class - called base class or super class
New/Extending class - called derived class or sub class

UML for B extends A
Derived class

e automatically inherits from the base class
all public/protected instance variables
and methods

e can add additional methods and
instance variables

ecan provide different versions

of inherited methods = override

1/19/17 043

Member Access

public:

e accessible anywhere the class can be accessed
private:

e accessible only inside the same class

e Does not include subclasses — derived classes have no special
permissions

A new mode: protected

e accessible inside the defining class and all its subclasses
When to use public/private/protected:
e NEVER use public for fields

e Use protected for "internal" things that subclasses also are
intended to access

1/19/17 04-4

Static and Dynamic Types

e Static/compile time type : the declared type of the reference
variable. Used by the compiler to check syntax.

e Dynamic/runtime-time type: the object type the variable
currently refers to (can change as program executes)

e Interface and Abstract Classes define a TYPE , which one?

1/19/17 04-5

Dynamic Dispatch—>
Where to look for methods?

e Static types - the compiler knows exactly what method must
execute

e Dynamic types - the compiler knows the name of the method
but...

There could be ambiguity about which version of the method
will actually be needed at run-time:
e The decision is deferred until run-time = dynamic dispatch

e The chosen method matches the dynamic (actual) type of
the object

1/19/17 04-6

Public Interface

WHAT?

* A set of method declarations/common behaviors

e Contract /protocol of what the classes can do.

—Class that agrees to interface, should implement its behaviors

WHY needed?

* Allows interaction, without knowing specific implementation
* Take advantage of multiple inheritance for one class.

* Achieves subtype polymorphism =2

Classes that implement the same interface can be treated similarly

* method signatures of |,
Interface | without code;
* no instance variables

methods of |,

including code
Concrete

Class C

* instance variables of C
* other methods,

1/19/17 038

Interfaces vs Inheritance

| INTERFACE INHERITANCE

“Is —A” Relationship - -
Code Sharing - -
B2>A B implements B extends class A
interface A — B inherits
— B inherits the everything from A
method signatures (including any
from A (must method code and
implement them) instance variables)

Specification Implementation

1/19/17 03.9

Class Object

e All types of objects have a superclass named Object.

e Every class implicitly extends Object

eThe Object class defines several methods:

epublic String toString/()
Returns a text representation of the object,

Object

equals
finalize
getClass
hashCode
notify
notifyAll
toString

wait

:

often so that it can be printed.

Posn

X, Y

epublic boolean equals (Object other)

getX
getY

Compare the object to any other for equality.
Returns true if the objects have equal state.

Recall: comparing objects

e The == operator does not work well with objects.

== compares references to objects, not their state.

It only produces t rue when you compare an object to itself.

Posn pl = new Posn (5, 3);
Posn p2 = new Posn(5, 3);
if (pl == p2) {

System.out.println ("equal") ;
}

pl

Flawed equals method

We can change this behavior by writing an equals method.
e Ours will override the default behavior from class Object.

e The method should compare the state of the two objects and return
true if they have the same x/y position.

A flawed implementation:
public boolean equals (Posn o) {

1if (this.x !'= null ? !this.x.equals(o.x) : o.x != null)
return false;

return this.y != null ? this.y.equals(o.y) : o.y == null;

equals and Object

public boolean equals (Object name)
statement(s) that return a boolean value ;

e The parameter to equals must be of type Object.
*Object is a general type that can match any object.

e Having an Object parameter means any object can be
passed.

If we do not know what type it is, how can we compare it?

Another flawed version

e Another flawed equals implementation:
public boolean equals (Object o) {

1f (this.x != null ? !this.x.equals(o.x) : o0.x !=null)
return false;

return this.y !'= null ? this.y.equals(o.y) : o.y == null;

}

e |t does not compile:

Posn.java:36: cannot find symbol
symbol : wvariable x

eThe compiler is saying,
"o could be any object. Not every object has an x field."

Type-casting objects

eSolution: Type-cast the object parameter to a Posn.
public boolean equals (Object o) {

Posn posn = (Posn) o;

1f (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)
return false;

return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

e Casting objects is different than casting primitives.
e Really casting an Object reference intoa Posn reference.
e Does NOT actually change the object that was passed.

e Tells the compiler to assume that o refers to a Posn object.

Comparing different types

Posn p = new Posn (7, 2);

if (p.equals("hello")) { // should be
false

}

e Currently our method crashes on the above code:

Fxception in thread "main"

jJava.lang.ClassCastException: java.lang.String

1 at Posn.equals (Posn.java:2b5)

[* The culprit is the line with the type-cast:

public boolean equals (Object o) {

Posn posn = (Posn) o;

What about this?

public boolean equals (Object o) {

if (this.getClass () '=o.getClass()) return false;

Posn posn = (Posn) o;

if (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)
return false;

return this.y != null ? this.y.equals(posn.y) : posn.y == n

What about this?

public boolean equals (Object o) {

1f (o==null || this.getClass() !=o.getClass()) return false;

Posn posn = (Posn) o;

if (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)
return false;

return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

Finally

public boolean equals (Object o) {

if (this == 0) return true;

1f (o==null || this.getClass () !=o.getClass()) return false;

Posn posn = (Posn) o;

1f (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)
return false;

return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

