
RECAP	of	Lectures	1&2
Maria	Zontak

1/19/17 04-2

‘Is-a’	in	Programming
Java,	C++	and	more	provide	direct	support	for	“IS	- A”:	
• Class	Inheritance	- new	class	extends existing	class
• Key	for	good	object-oriented	programming:	
• Using	the	SAME	code	in	MANY	contexts	à Reusable	code
• Reduce	bugs	à Robust	and	maintainable	

• Terminology:

Superclass
Subclass

Class	A

Class	B

Original/Extended class	- called	base	class or	super	class
New/Extending class	- called	derived	class or	sub	class

Derived	class
•automatically	inherits from the	base	class
all		public/protected	instance	variables	
and	methods	

•can	add additional	methods	and	
instance	variables
•can	provide	different	versions
of	inherited	methods	à override

UML	for	B	extends	A

1/19/17 04-3

Vocabulary	and	Principles

1/19/17 04-4

Member	Access
public:
•accessible	anywhere	the	class	can	be	accessed

private:
•accessible	only	inside	the	same	class
•Does	not include	subclasses	– derived	classes	have	no	special	
permissions

A	new	mode:	protected
•accessible	inside	the	defining	class	and	all	its	subclasses

When	to	use	public/private/protected:
•NEVER	use	public	for	fields
•Use	protected	for	"internal"	things	that	subclasses	also	are	
intended	to	access

1/19/17 04-5

Static	and	Dynamic Types

•Static/compile	time	type :	the	declared	type	of	the	reference	
variable.	Used	by	the	compiler	to	check	syntax.

•Dynamic/runtime-time	type: the	object	type	the	variable	
currently	refers	to	(can	change	as	program	executes)

•Interface	and	Abstract	Classes	define	a	TYPE	,	which	one?	

Piece p = new Queen();

1/19/17 04-6

Dynamic	Dispatchà
Where	to	look	for	methods?

•Static types		- the	compiler	knows	exactly	what	method	must	
execute

•Dynamic types		- the	compiler	knows	the	name of	the	method	
but…
There	could	be	ambiguity	about	which	version	of	the	method			
will	actually	be	needed	at	run-time:
•The	decision	is	deferred	until	run-time	à dynamic	dispatch
•The	chosen	method	matches	the	dynamic	(actual)	type	of	
the	object

Piece p = new Queen();

Public	Interface
WHAT?
• A	set	of	method	declarations/common	behaviors
• Contract /protocol	of	what	the	classes	can	do.	
àClass	that	agrees	to	interface,	should	implement	its	behaviors

WHY	needed?
• Allows	interaction,	without	knowing	specific	implementation
• Take	advantage	of	multiple	inheritance	for	one	class.
• Achieves	subtype	polymorphism	à
Classes	that	implement	the	same	interface	can	be	treated	similarly

1/19/17 01-7

1/19/17 03-8

Interface		I
• method	signatures	of	I,	

without code;												
• no instance	variables

Concrete	
Class	C

methods	of	I,	
including code

• instance	variables	of	C
• other	methods,

Interfaces	vs	Inheritance
INTERFACE INHERITANCE

“Is	–A”	Relationship V V
Code Sharing X V

BàA B	implements
interface	A
à B	inherits	the	
method	signatures	
from	A	(must	
implement	them)

B	extends class	A
à B	inherits	
everything	from	A	
(including any	
method	code	and	
instance	variables)	

1/19/17 03-9

Specification	 Implementation

Class	Object
•All	types	of	objects	have	a	superclass	named	Object.
•Every	class	implicitly	extends	Object

•The	Object class	defines	several	methods:

•public String toString()
Returns	a	text	representation	of	the	object,
often	so	that	it	can	be	printed.

•public boolean equals(Object other)
Compare	the	object	to	any	other	for	equality.
Returns	true if	the	objects	have	equal	state.

Posn

Recall:	comparing	objects
•The	== operator	does	not	work	well	with	objects.

== compares	references	to	objects,	not	their	state.
It	only	produces	true when	you	compare	an	object	to	itself.
Posn p1 = new Posn(5, 3);
Posn p2 = new Posn(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

x 5 y 3p1

p2
...

x 5 y 3

Flawed	equalsmethod
•We	can	change	this	behavior	by	writing	an	equalsmethod.

•Ours	will	override the	default	behavior	from	class	Object.

•The	method	should	compare	the	state	of	the	two	objects	and	return	
true if	they	have	the	same	x/y	position.

•A	flawed implementation:
public boolean equals(Posn o) {
if (this.x != null ? !this.x.equals(o.x) : o.x != null)

return false;
return this.y != null ? this.y.equals(o.y) : o.y == null;

}

equals and	Object
public boolean equals(Object name) {

statement(s)	that	return	a	boolean value ;
}

•The	parameter	to	equalsmust	be	of	type	Object.
•Object is	a	general	type	that	can	match	any	object.
•Having	an	Object parameter	means	any object	can	be	
passed.
If	we	do	not	know	what	type	it	is,	how	can	we	compare	it?

Another	flawed	version
•Another	flawed	equals implementation:
public boolean equals(Object o) {
if (this.x != null ? !this.x.equals(o.x) : o.x !=null)

return false;
return this.y != null ? this.y.equals(o.y) : o.y == null;

}

•It	does	not	compile:
Posn.java:36: cannot find symbol
symbol : variable x
…

•The	compiler	is	saying,
"o could	be	any	object.	Not	every	object	has	an	x field."

Type-casting	objects
•Solution:	Type-cast the	object	parameter	to	a	Posn.
public boolean equals(Object o) {

Posn posn = (Posn) o;
if (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)

return false;
return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

•Casting	objects	is	different	than	casting	primitives.
•Really	casting	an	Object reference	into	a	Posn reference.
•Does	NOT	actually	change	the	object	that	was	passed.
•Tells	the	compiler	to	assume	that	o refers	to	a	Posn object.

Comparing	different	types
Posn p = new Posn(7, 2);
if (p.equals("hello")) { // should be
false

...
}

•Currently	our	method	crashes	on	the	above	code:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Posn.equals(Posn.java:25)

•The	culprit	is	the	line	with	the	type-cast:

public boolean equals(Object o) {
Posn posn = (Posn) o;

What	about	this?

public boolean equals(Object o) {

if (this.getClass()!=o.getClass()) return false;
Posn posn = (Posn) o;
if (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)

return false;
return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

What	about	this?

public boolean equals(Object o) {

if (o==null || this.getClass()!=o.getClass()) return false;
Posn posn = (Posn) o;
if (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)

return false;
return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

Finally

public boolean equals(Object o) {

if (this == o) return true;
if (o==null || this.getClass()!=o.getClass()) return false;
Posn posn = (Posn) o;
if (this.x != null ? !this.x.equals(posn.x) : posn.x !=null)

return false;
return this.y != null ? this.y.equals(posn.y) : posn.y == n

}

