From Principles to Practice with Class in the First Year

Sam Tobin-Hochstadt David Van Horn

Northeastern University
Boston, Massachusetts, USA

{samth,dvanhorn}@ccs.neu.edu

We propose a bridge between functional and object-oriented programming in the first-year curricu-
lum. Traditionally, curricula that begin with functional programming transition to a professional,
usually object-oriented, language in the second course. This transition poses obstacles for students,
and often results in confusing the details of development environments, syntax, and libraries with
the fundamentals of OO programming that the course should focus on. Instead, we propose to begin
the second course with a sequence of custom teaching languages which minimize the transition from
the first course, and allow students to focus on core ideas. After working through the sequence of
pedagogical languages, we then transition to Java, at which point students have a strong command of
the basic principles. We have 3 years of experience with this course, with notable success.

1 Introduction

Many universities and colleges aim to teach their students proficiency in an industrial object-oriented
programming language by the end of the students’ first year. The most common approach to achieve
this aim is to teach an industrial language in the first course, often Java, starting on the first day. Other
curricula take a more indirect route by teaching functional programming in the first semester, followed
by a second semester in Java. The latter approach is an improvement over the first, as pointed out by
numerous observers [9, 23| (7, [22]], but both suffer serious flaws.

As an example, Northeastern University teaches introductory programming in the first semester
using How to Design Programs [8], followed by object-oriented programming using How to Design
Classes [[11]] in the second semester. This sequence was designed to provide a smooth path for incoming
students with a competence in high-school level algebra to reach proficiency in Java by the end of their
first year [9]]. It was a major improvement over the previous Java-first curriculum in terms of student
success, attrition, and preparation for subsequent courses [21]]. However, significant problems remain; in
particular, the second semester course violates the designers’ own principles (as recalled in [5]):

1. introduce only those language constructs that are necessary to teach programming principles, and

2. choose a language with as few language constructs as possible, and one in which they can be
introduced one at a time.

The problem is that the first semester ends with an advanced pedagogical functional language and
the second semester starts with Java, although it focuses on a side-effect free subset. Despite this focused
subset, this transition is too abrupt to meaningfully bridge the gap between functional and object-oriented
programming, because several other significant transitions happen in concert:

e from a highly regular and minimal syntax to a complicated irregular syntax,
e from an untyped language to a typed language,

e from a pedagogical programming environment (DrRacket) to a professional programming envi-
ronment (Eclipse),

Submitted to:

TFPIE © S. Tobin-Hochstadt & D. Van Horn



2 From Principles to Practice with Class in the First Year

e from a language with numeric values corresponding to mathematical objects to a language with
numeric values corresponding to common machine representationsf_-]

e from a language with image literals and graphical libraries to one in which graphical programming
is tedious,

e from an interaction-oriented language and tool suite to a compiled, batch-oriented language.

This abrupt transition has several negative consequences which we have experienced first-hand: the
principles of object-oriented programming are obscured and de-emphasized, struggling with the pro-
gramming environment is frustrating and can cause potentially good students to leave the program, it
favors students with prior exposure to the particular tools (a set that is demographically skewed), it in-
hibits students from experimenting by allowing them to rely upon past skills, and it creates the false
impression that courses are discrete units of instruction that can be discarded after successful completion
rather than being part of a continuous and cumulative educational experience.

We contribute an alternative approach to the second semester that overcomes these problems and
provides a gradual introduction to object-oriented programming. Our approach starts the second semester
by introducing only the concept of programming with objects, while all other aspects of the course remain
where they were left off in the previous semester. This allows other concepts to be introduced at the point
at which they are relevant and motivated. Despite this more gradual approach, the course accomplishes
the goal of reaching industrial language competence by the end of the semester, covering a super-set of
the concepts and topics covered in the How fo Design Classes-based course.

Outline The remainder of this paper is organized as follows: section [2| provides background on How
to Design Programs and the context and constraints involved in the first year at Northeastern. Section 3]
describes our approach to the second semester, which starts with a small shift in perspective to bridge
the gap between functional programming and object oriented programming. Section [] describes the
path from our pedagogical languages to an industrial object-oriented programming language. Section [3]
discusses the relation to existing work and section [6|concludes.

2 Background: the context at Northeastern

At Northeastern, the College of Computer & Information Science (CCIS) requires a four course introduc-
tory sequence for Computer Science majors in the first year. The first semester features both a course on
discrete mathematics and an introduction to programming following the How to Design Programs cur-
riculum. The second semester follows with a course on object-oriented programming and one featuring
formal reasoning about programs, both on paper and with the ACL2 theorem prover [[17]].

After the first year, students take a wide variety of follow-up courses, ranging from a required course
in “Object-oriented design” to architecture, operating systems, robotics, and programming languages.
No standard language is used in these courses.

More significantly, Northeastern distinctively emphasizes experiential education, with almost all
Computer Science majors participating in a 6 month “co-op” internship after their third semester. These
co-ops take place at a wide variety of companies, and while most students do some software develop-
ment, there is no single platform or set of tools that commands majority use. In particular, there is wide

'While this may seem like a minor point, details of numeric representation can crop up quickly in a Java-based course—for
example, 1/3 cannot be represented by any Java numeric types.



S. Tobin-Hochstadt & D. Van Horn 3

variation in the languages students use while on co-op. This combination sets the constraints under which
we designed our approach.

2.1 A first course on How to Design Programs

In the first semester, students are introduced to the “design recipe”, a step-by-step process for going from
English descriptions of problems to working programs. The design recipe involves six steps:

1. Analyze the information involved in the problem and express how to represent it as data.

Write down a function signature, a summary of the purporse of the function, and a function stub.
[lustrate the signature and the purpose statement with some functional examples.

Take an inventory of the input data that can be used to compute an answer.

Write the code for the function.

A

Verify the behavior of the program against the functional examples given earlier.

Students explore program design using this process in the context of a series of successively richer
pedagogical programming language levels [9) 8] that are included in the DrRacket (formerly DrScheme)
programming environment [12]. The language and environment include several tools in support of
the design recipe. For example, functional examples can be written as executable tests by writting
check-expect expression [14]]; an algebraic stepper and REPL are provided to interact with programs
at each step of the design process.

Finally, the first semester course makes extensive use of a library for developing interactive anima-
tions and games using functional programming and functional graphics [10, i4]].

2.2 The goal of the second course

After the second course, students should both (a) be prepared for subsequent courses in the curriculum,
which expect familiarity with Java and standard Java libraries, (b) be prepared for co-ops in which they
will use professional-grade languages and tools which will almost certainly be object-oriented. More
significantly, we aim to teach the key insights behind the object-oriented approach to program design.

These constraints, while in detail specific to Northeastern and the CCIS curriculum, are broadly
similar to the requirements for the first year at many universities. Our course also attends to smaller and
more idiosyncratic elements of our curriculum, ranging from formal reasoning to algorithmic analysis,
as described in the following sections.

3 A small shift of focus

On the first day of the second semester, we introduce a single linguistic concept to an otherwise un-
changed context of the previous semester: the idea of an object. An object is a new kind of value that
can, as a first cut, be understood as a pairing together of two familiar concepts: data and functionality.

e An object is like a structure in that it has a fixed number of fields, thus an object (again, like a
structure) can represent compound data. But unlike a structure, an object contains not just data,
but functionality too;

e An object is like a (set of) function(s) in that it has behavior—it computes; it is not just inert data.



4 From Principles to Practice with Class in the First Year

This suggests that objects are a natural fit for well-designed programs since good programs are orga-
nized around data definitions and functions that operate over such data. An object, in essence, packages
these two things together into a single programming apparatus. This has two important consequences:

1. Students already know how to design programs oriented around objects.

Since objects are just the combination of two familiar concepts that students already use to design
programs, they already know how to design programs around objects, even if they have never heard
the term “object” before.

2. Objects enable new kinds of abstraction and composition.

Although the combination of data and functionality may seem simple, objects enable new forms
of abstraction and composition. That is, objects open up new approaches to the construction of
computations. By studying these new approaches, we can distill new design principles. Because
we understand objects are just the combination of data and functionality, we can understand how
all of these principles apply in the familiar context of programming with functions.

3.1 The basics of objects

To begin with, we introduce the notion of a class definition, which can be thought of at first as a structure
definition in that it defines a new class of compound data. A class is defined using the define-class
form:

(define-class posn (fields x y))
This is similar to the define-struct form of the first semester, used as follows:
(define-struct posn (x y))

An object is a value that is a member of this class of data, which can be constructed with the new
keyword, a class name, and the appropriate number of arguments for the fields of the object:

(new posn 3 4)

An object understands some set of messages. Simple structure-like objects understand messages for
accessing their fields and messages are sent by using the send keyword, followed by an object, a message
name, and some number of arguments:

(send (new posn 3 4) x) ;=> 3
(send (new posn 3 4) y) ;=>4

The send notation is simple, but syntactically heavy. Once students are comfortable with send, we in-
troduce shorthand to make it more convenient, writing (x . m) for (send x m). The dot notation can
be nested, so (x . m . n) is shorthand for (send (send x m) n). (The approach of introducing
a simple, uniform syntax and later introducing a convenient shorthand that would have been confusing
to start with follows the approach of first introducing cons and then later 1ist and quote in the first
semester.)

It is possible to endow objects with functionality by defining methods, which extend the set of mes-
sages an object understands. A method definition follows the same syntax as a function definition, but
is located inside of a class definition. Here is a more complete development of the posn class with two
methods:



S. Tobin-Hochstadt & D. Van Horn 5

;3 A Posn is a (new posn Number Number),
;; which represents a point on the Cartesian plane
(define-class posn (fields x y)

;; dist : Posn -> Number
;; Distance between this posn and that posn
(check-expect ((new posn O 0) . dist (new posn 3 4)) 5)
(define (dist that)
(sqrt (+ (sqr (- (this . x) (that . x)))
(sqr (- (this . y) (that . y))))))

;; dist-origin : -> Number
;; Distance of this posn from the origin
(check-expect ((new posn O 0) . dist-origin) 0)
(check-expect ((new posn 3 4) . dist-origin) 5)
(define (dist-origin)

(this . dist (new posn 0 0))))

This class definition defines a new class of values which are posn objects. Such objects are comprised
of two numeric values and understand the messages x, y, dist, and dist-origin. Unit tests have been
included with each method definition, following the principles of the design recipe studied in the first
semester. Although check-expect forms can appear within class definitions, they are lifted to the
top-level when a program is run.

Methods can be defined to consume any number of arguments, but they are implicitly parameterized
over this, the object that received the message.

3.2 Where did the cond go?

Unions, and recursive unions in particular, are a fundamental kind of data definition that students are
well-versed in from the previous semester. A fundamental early lesson is how to represent (recursive)
unions using classes and how to write recursive methods. As an example, figure[I|defines binary trees of
numbers (an archetypal recursive union data definition) using the Beginning Student language (BSL) as
used at the start of the first semester, and also using the Class language of our course.

The structure of this program is analogous to the approach of the previous semester but this example
brings to light an important difference with the functional approach. The method for computing the sum
of a leaf is defined in the 1eaf class, while the method for computing the sum of a node is in the node
class. When a tree object is sent the sum method, there is no function with a conditional to determine
whether the object is a leaf—instead, the object itself takes care of computing the sum based on its own
sum method. This shift in perspective is at the core of object-orientation: objects contain their own
behavior and the case analysis previously done in functions is eliminated.

3.3 Worlds and animations

At Northeastern, Programming in the first semester is often oriented around interactive event-driven
video games. The basic design of a video game involves defining a data representation for states of the
game and functions for transitioning between states based on events such as clock ticks, keyboard input,
or mouse events. The design of a game thus involves the design of data and operations on that data;



6 From Principles to Practice with Class in the First Year

#lang bsl #lang class/1

;; A Tree is one of: ;; A Tree is one of:

;; — (make-leaf Number) ;3 — (new leaf Number)

;3 — (make-node Tree Number Tree) ;; — (new node Tree Number Tree)
(define-struct leaf (v)) ;3 and implements

(define-struct node (left v right)) ;; sum : -> Number

;; sums the elements of this tree
;; sum : Tree -> Number

;; sums the elements of the given tree (define-class leaf
(define (sum a-tree) (fields v)
(cond [(leaf? a-tree) (leaf-v a-tree)] (define (sum) (this . v)))
[else
(+ (sum (node-left a-tree)) (define-class node
(node-v a-tree) (fields left v right)
(sum (node-right a-tree)))])) (define (sum)
(+ (this . left . sum)
(this . v)

(this . right .sum))))

(check-expect (sum (make-leaf 7)) 7) (check-expect ((new leaf 7) . sum) 7)
(check-expect (check-expect
(sum (make-node ((new node
(make-leaf 1) (new leaf 1)
5 5
(make-node (make-leaf 0) (new node (new leaf 0)
10 10
(make-leaf 0)))) (new leaf 0))))
16) . sum)
16)

Figure 1: Binary tree sum in Beginning Student and in the Class language

in other words, the game involves the design of objects. We therefore continue in the second semester
with the use of programming video games but supplement the course with a library for doing so in an
object-oriented style. Figure [2] gives an example written in both the functional style and object-oriented
style.

The key difference between these two programs is that the functional program uses the 2htdp/universe
library, which provides a big-bang form that consumes the initial state of the world and has a declarative
form of associating event-handler functions, while the object-oriented program uses an alternative library
developed for our class: class/universe. It also provides a big-bang form but it consumes a single
argument, the initial state of the world represented as an object. Event handlers are simply methods of
this object; for example, clock ticks trigger the on-tick method.

The program on the left is the first program of the first semester, while the one on the right is the
first program of the second semester. Our approach is able to make the conceptual connection between
functional and object-oriented programming quite clear while appealing to the familiar event-driven
interactive programs developed throughout the year.



S. Tobin-Hochstadt & D. Van Horn

#lang bsl
(require 2htdp/image 2htdp/universe)

#lang class/1
(require 2htdp/image class/universe)

;3 A World is a (new world Number)
(define-class world
(fields n)

;5 A World is a Number

;; on—-tick : World -> World
(define (tick w)
(addl w)) ;; on-tick : -> World
(define (on-tick)
;; to-draw : World -> Image (new world (addil (this . n))))
(define (draw w)
(place-image ;3 to-draw : -> Image
(circle 10 "solid" "red") (define (to-draw)
w 200 (empty-scene 400 400))) (place-image

(circle 10 "solid" "red")

;; on-key : KeyEvent World -> World (this . w) 200 (empty-scene 400 400)))

(define (on-key k w) 10)

;3 on—key : KeyEvent -> World
(big-bang 10 (define (on-key k) (new world 10)))
[to-draw draw]

[on-tick tick]) (big-bang (new world 10))

Figure 2: World programs

The move to object-oriented style immediately and naturally leads to designs that are enabled by
organizing programs around objects. For example, the state pattern [13] becomes useful almost imme-
diately. The programs in figure [2] animate a rocket (rendered as a circle in this example) taking off. An
illustrative follow-up exercise is to animate a rocket that lands. The natural design is to have two variants
for states of the rocket: one for descending rockets and one for landed rockets (an example is given in
appendix[A)). While in the functional approach it is easy to use the state-pattern for the data representing
a rocket, it is more difficult to have states of behavior. The typical solution adds conditionals to all of
the event handlers. In the object-oriented approach, states of behavior are just as natural as data. It is
therefore straightforward to design programs with easy to observe invariants such as “a landed rocket
never changes position.” In the functional approach, even such simple properties are more involved to
establish, because all event handlers must be inspected.

This approach also leads naturally to discussion of inheritance. Often programs with multiple states
wish to share the implementation of some methods. We first show that this can be accomplished at the
cost of minor boilerplate with delegation, and then show how inheritance allows the programmer to avoid
duplication and boilerplate entirely. Once inheritance is able to group identical methods, overriding is a
natural next step when some but not all of the implementations are identical across the variants.

3.4 Language levels

Our introduction to object-oriented programming is built on a series of “language levels”, each of which
introduces additional features, adding complexity to the programming model and expressiveness to the
programs. Each language is class/N for some N, with features appearing in the following order.



8 From Principles to Practice with Class in the First Year

0. Classes and Objects

1. Abbreviated notation for method calls
2. Super classes

3. Overriding

4. Constructors

Several commonalities run through all of these languages. First, they are all purely functional; we
do not introduce imperative I/O or side-effects until after transitioning to Java in the second half of
the course. Second, they all are a super set of the Intermediate Student language from How to Design
Programs, meaning that they support higher-order functional programming and lists.

One key principle that we adhere to in the design of the language levels is that no features of the
language are added purely to support “software engineering” concerns such as specification mechanisms.
Not only does that language not support declaring types or contracts, but interfaces are described purely
in comments.

This is not to say that interfaces and contracts are optional; in fact, they are mandatory. But the focus
of the first part of the course is on the fundamentals of object-orientation. Teaching the use of software
engineering tools such as type systems, while vital, is a topic which we defer to the second half of the
course when we transition to Java.

We made this decision after experience in which students were confused about the relationship be-
tween explicit interface specifications, type systems, and the informal data definitions and contracts
which students are required to write for all methods. After removing interfaces from the language and
making them purely a specification construct, this confusion disappeared.

4 From principles to industrial languages

The transition from custom teaching languages to a professional language takes place about half-way
through the course. At this point, students already have experience with many of the essential concepts
of object-oriented programming. In particular: objects, classes, fields and methods, dynamic dispatch,
inheritance, and overriding.

From this point, almost any language that students might encounter in future co-op positions, summer
internships, or upper-level courses would be an appropriate follow-up. Our course transitions to Java,
but C#, Python, Ruby, Eiffel, or JavaScript would all work naturally. The key lesson of the transition
is that the fundamental principles underlying object-oriented programming remain the same between
languages, and that learning a new language is primarily a matter of mapping these concepts to specific
constructs in the new language. Of course, particular languages also use unique specific mechanisms
which need to be taught to use the language effectively, but these are rarely as vital as the cross-language
principles.

We chose the half-way point as the time for transition based on experience with earlier versions
of this course. In particular, we found that a later transition, while allowing us to present additional
concepts in a controlled environment, did not give students sufficient time and experience with Java.
Subsequent classes found that students were strong on fundamentals but weak on Java practice. The
other alternative, transitioning earlier, would not provide sufficient time to cover the fundamental topics
before the transition.



S. Tobin-Hochstadt & D. Van Horn 9

4.1 Functional Java

The transition begins with replicating the object-oriented style of our teaching languages in Java. In par-
ticular, we do not introduce mutation, for loops, or mutable data structures such as arrays or ArrayLists
until later in the semester. Instead, students design data representations using classes, with interfaces
representing unions of data. Additionally, we avoid mention of the distinction between primitive and
other values in Java, which is made easier by not using standard libraries early. An example of this style
of programming is presented in figure 3] repeating the binary tree sum from the previous section.

Comparing this figure to the previous example illustrates a number of the differences that students
are exposed to upon transition to Java.

1. Explicit representation of unions and interfaces in the language. Previously, interfaces were simply
described in stylized comments, following the How to Design Programs approach.

2. Types are now specified as part of the program and are (statically) enforced. Data definitions and
interfaces can be transformed from the stylized comments into interface definitions and method
signatures annotated with types. Students are taught the benefits of type systems, which impose
syntactic restrictions sufficient to prove objects meet (the structural aspects of) their interface defi-
nitions. Students also encounter the downside of types when they discover the type system cannot
always follow valid reasoning about program invariants and may reject perfectly good programs.

3. Java syntax is substantially different and more verbose. For example, constructors must be defined
explicitly.

4. The testing environment is somewhat different, and requires additional boilerplate, although we
are able to use the Javalib framework [20] to support testing with structural equality.

There are other differences which cannot be seen from a code snippet.

5. Students must use a new development environment and compiler. In class, we primarily develop
in a text editor and run the Java compiler at the command line. In labs and on homeworks, students
typically use the Eclipse IDE.

6. Installing and configuring libraries is now required. Because we use a custom library for testing,
students must cope with library installation and class paths on the first day.

All but the first two of these changes are unrelated to the fundamental lessons we hope to teach—the
rest merely present additional hurdles for students. However, at this point in the semester, the students
are far better equipped to meet these challenges. They are already familiar with objects, classes, and
the other concepts we have covered. They are also fully engaged in the class, instead of making the
transition in the midst of the transition between semesters. Finally, they have now been programming for
50% longer than they had at the start of the semester.

4.2 Traditional Java

Thanks to the preparation in the first half of the course, we can cover OO programming in a functional
subset of Java in a just a few lectures. We then increase the subset of the language we use to encompass
mutation, loops, and mutable data structures and introduce the underlying design principles. We present
ArrayLists, followed briefly by arrays. Students use, and then implement, hash tables as well as other
mutable and immutable data structures. Conventional input and output are treated only very briefly, as
we focus instead on both fundamentals and exercises making use of real APIs such as hashing functions



10 From Principles to Practice with Class in the First Year

import tester.x*;

interface Tree {
// sums the elements of this tree
Integer sum();

class Leaf implements Tree {
Integer v;
Leaf (Integer v) { this.v = v; }
public Integer sum() { return this.v; }

class Node implements Tree {
Tree left; Integer v; Tree right;
Node(Tree 1, Integer v, Tree r) {
this.left = 1;
this.v = v;
this.right = r;

public Integer sum() {
return this.left.sum() + this.v + this.right.sum(Q);

}

class Examples {
void test_tree(Tester t) {
t.checkExpect (new Leaf(7).sum(), 7);
t.checkExpect (new Node(new Leaf (1),
5,
new Node(new Leaf(0), 10, new Leaf(0))).sum(),
16);

Figure 3: Binary tree sum in the style of How to Design Classes



S. Tobin-Hochstadt & D. Van Horn 11

or Twitter posting. Finally, while, for, and for-each loops are presented, following the methodology of
How to Design Classes which connects loops to stylized use of recursive functions with accumulators, a
technique the students now have used for two semesters.

4.3 Beyond Traditional Java

Finally, at the end of the course, we are able to build on the two major segments to examine less-well-
explored topics in object-oriented programming. Typically, we cover the basics of representing objects in
a functional language, advanced OO techniques such as mixins and prototypes, and a new OO language
such as Ruby or JavaScript. Additionally, we emphasize the ability to embed functional programming in
an OO context, using techniques such as the command pattern and the visitor patterns. Again, the key
message is the transferability of concepts across languages.

5 Related work

Teaching programming principles in a functional style has a long history, with Abelson and Sussman’s
Structure and Interpretation of Computer Programs |1]] being a prominent example. Our work follows in
the tradition of the Program by Design (PbD) projecﬂ (previously known as the TeachScheme! project),
which emphasizes a systematic approach to program construction.

Since the introduction of functional-first curricula, and more specifically in the Program by Design
framework, numerous courses have tackled the problem of transition. Typically they, as we, transition to
Java in the second course. We discuss first the approach developed by some of the principal creators of
PbD, and then other approaches.

5.1 Program by Design and Professor]J

The Program by Design project initially focused only on the first course, with the second course typically
taught in Java in institution-specific ways. Subsequently, the pedagogical approach was extended to Java,
but without the tool support and textbook of the first course. An example of this approach is described
by Bloch [5], who presents the experience integrating these courses at Adelphi. He reports that “many
of Java’s concepts could be introduced more easily in a second course than a first.”

With these lessons in mind, the PbD project set out to apply the lessons of teaching languages and
IDE support to Java, as well as to present the approach to object-oriented programming in textbook form.
Professor]J [[15] is the resulting system, accompanying the draft textbook How fo Design Classes [11]]. In
parallel to our course, Northeastern teaches the remainder of its computer science majors following this
approach.

Professor] and How to Design Classes maintain many of the ideas of the first course. In particular,
ProfessorJ brings language levels to Java, in an attempt to smooth the transition for students from the first
course and provide more helpful feedback. Professor] is also embedded in the DrRacket IDE, increasing
familiarity for the students and supporting tools such as an interactive read-eval-print loop.

However, the “day 1 transition from the student languages used with How to Design Programs to
Professor]J is too abrupt and too large. Most significantly, changing languages from the first semester
immediately rather than simply adding a new concept confuses too many issues for students. On the
first day of a How to Design Classes-based course, students see object-orientation, a new programming

Zhttp://www.programbydesign.org/


http://www.programbydesign.org/

12 From Principles to Practice with Class in the First Year

paradigm; Java, a new language with new syntax, and a static type system, a crucial but orthogonal
concept. In contrast, our course presents just one of these concepts on the first day, but covers all of them
by the end of the semester.

ProfessorlJ also takes on the the dual challenges of implementing Java as well as subsetting it. This
ultimately resulted in both a limited Java environment as well as the eventual abandoning of the tool
since it was too difficult to maintain, let alone keep up with advances in Java.

Committing to Java on the first day, regardless of the environment provided to students, has signifi-
cant limitations. First, the syntactic and semantic heaviness of Java is a burden for beginning students,
and discourages interactive and experimental programming. The very first chapter of How to Design
Classes discusses the fixed size of Java integers, a topic avoided entirely in the first course. Second,
by committing to a particular industrial-strength language, it closes off possibilities in the curriculum.
Third, it commits entirely to the new paradigm, making it more difficult for students to compare the
approaches.

Since Professor] is no longer available, students are faced with an even starker change on the first day.
Even with a student-oriented environment such as DrJava or BlueJ [2,16], students must learn an entirely
new tool, along with new libraries. If the course uses a typical professional development environment
such as Eclipse, students must also contend with compilation, loss of interactivity, and subtle issues such
as classpaths, none of which are fundamental to the concepts that the course focuses on.

5.2 Other transitions

Not every curriculum that begins with How to Design Programs transitions to Java after the first course.
Ragde [22]] describes a second course that includes both more advanced work in Scheme beyond teaching-
oriented languages as well as low-level programming in C, taught to computer science majors at Uni-
versity of Waterloo. Radge’s course intentionally does not use student-oriented languages, although the
recently-developed CO language [19] could provide such a language. Other discussions of functional
programming in the first year [7] do not discuss the problems of transition.

5.3 Other approaches to Java

The problems of teaching Java in introductory courses have been well-explored; we mention only a few
related directions here. DrJava [2]] and BlueJ [16, [18] are introductory environments for Java, which
alleviate some but not all of the drawbacks we have outlined. For example, both of these systems im-
mediately present students with (1) type systems and (2) Java syntax, and (3) do not support the image
values and exact numeric values that we rely on in our course.

Several teaching-oriented graphics libraries for Java have been proposed [6} 3]], but these are signif-
icantly more complex than the graphics and interaction libraries we are able to use in the introductory
language we present.

6 Experience and outlook

We have now completed the third iteration of this course, teaching approximately 35 students each time.
Our experience has been uniformly positive, and the students have gone on to significant success in
the subsequent courses, despite the curriculum differing from what the bulk of Northeastern University
computer science majors take. Anectodally, the class has also had notable success in the recruitment and



S. Tobin-Hochstadt & D. Van Horn 13

retention of female students, as compared to the other versions of the second-semester course. However,
the classes are sufficiently different as to make a precise comparison impossible.

The course has provided a vantage point to introduce topics that will be taken up later in the cur-
riculum. We present types, contracts, invariants, and properties of functions, all of which tie into both
the concurrent course on logic and computation, as well as later classes on formal methods. The empha-
sis on representation-independence and interfaces both tie into later classes on software engineering, as
well as preparing students for algorithms and data structures courses. Finally, the use of interactive and
distributed systems connects to later courses on operating systems and networks.

Despite our success, much remains to be done. Type systems are a fundamental concept, but their
introduction accompanies the rest of Java. Developing a typed version of our introductory languages
would allow a smoother introduction of this idea.

Our class’s use of Eclipse could also be improved by first transitioning to a pedagogically-oriented
Java environment, but we have not evaluated the specific options. Alternatively, introducing Java-like
syntax for the teaching languages we have developed would help tease apart the difficult transitions still
present in the course.

Finally, the Java portion of the class does not continue the use of “World”-style interactive graphical
programming, although a version of the “World” library has been developed for Java [20]. Instead,
our course focuses on coverage of standard Java libraries, as well as introductory algorithmic and data
structure topics. Continuing to use World-style programming in motivating examples might be valuable
for continuity between the two halves of the course.

Acknowledgments

Matthias Felleisen’s approach to pedagogy and passion for undergraduate teaching has inspired this
work from the beginning. CCIS Dean Larry Finkelstein entrusted two postdocs with the redesign of a
key undergraduate course, which made this experiment possible. Our teaching assistants, Dan Brown,
Asumu Takikawa, and Nicholas Labich, as well as the tutors and graders, contributed enormously to the
success of our courses. Finally, and most importantly, our students at Northeastern for the last three years
have put up with a curriculum in progress, and the opportunity to teach them has been truly rewarding.

References

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs. MIT
Press, 1996.

[2] Eric Allen, Robert Cartwright, and Brian Stoler. DrJava: a lightweight pedagogic environment for
java. SIGCSE Bull., 34(1):137-141, 2002.

[3] Carl Alphonce and Phil Ventura. Using graphics to support the teaching of fundamental object-
oriented principles in CS1. In Companion of the 18th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, OOPSLA ’03, pages 156-161. ACM,
2003.

[4] Ian Barland, Matthew Flatt, and Robby Findler. The design of a functional image library. In
Workshop on Scheme and Functional Programming (SFP), 2010.

[5] Stephen A. Bloch. Scheme and java in the first year. J. Comput. Sci. Coll., 15(5):157-165, 2000.



14 From Principles to Practice with Class in the First Year

[6] Kim B. Bruce, Andrea Danyluk, and Thomas Murtagh. A library to support a graphics-based
object-first approach to CS 1. In Proceedings of the thirty-second SIGCSE technical symposium on
Computer Science Education, volume 33 of SIGCSE 01, pages 6-10. ACM, 2001.

[7] Manuel M. T. Chakravarty and Gabriele Keller. The risks and benefits of teaching purely functional
programming in first year. J. Funct. Program., 14(1):113-123, 2004.

[8] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram Krishnamurthi. How fo design
programs: an introduction to programming and computing. MIT Press, 2001.

[9] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram Krishnamurthi. The structure
and interpretation of the computer science curriculum. Journal of Functional Programming, 14(4):
365-378, 2004.

[10] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram Krishnamurthi. A functional I/O
system or, fun for freshman kids. In ICFP 09 Proceedings of the 14th ACM SIGPLAN International
Conference on Functional programming, pages 47-58. ACM, 2009.

[11] Matthias Felleisen, Matthew Flatt, Robert Bruce Findler, Kathryn E. Gray, Shriram Krishnamurthi,
and Viera K. Proulx. How fo Design Classes (Draft). 2012. URL http://www.ccs.neu.edu/
home/matthias/htdc.htmll

[12] Robert B. Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul
Steckler, and Matthias Felleisen. Drscheme: a programming environment for Scheme. JFP, 12
(02):159-182, 2002.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

[14] Kathryn E. Gray and Matthias Felleisen. Linguistic support for unit tests. Technical Report UUCS-
07-013, University of Utah, 2007.

[15] Kathryn E. Gray and Matthew Flatt. ProfessorJ: a gradual introduction to java through language
levels. In Companion of the 18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA 03, pages 170-177. ACM, 2003.

[16] James I. Hsia, Elspeth Simpson, Daniel Smith, and Robert Cartwright. Taming java for the class-
room. SIGCSE Bull., 37(1):327-331, 2005.

[17] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

[18] Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg. The BlueJ system and its
pedagogy. Journal of Computer Science Education, 13(4), 2003.

[19] Frank Pfennig. CO reference, 2011. URL http://c0.typesafety.net/doc/cO-reference.
pdf.

[20] Viera K. Proulx. Javalib, 2012. URL http://www.ccs.neu.edu/javalib/.

[21] Viera K. Proulx and Kathryn E. Gray. Design of class hierarchies: an introduction to OO program
design. In Proceedings of the 37th SIGCSE technical symposium on Computer science education,
SIGCSE 06, pages 288-292. ACM, 2006.

[22] Prabhakar Ragde. The chilling descent: making the transition to a conventional curriculum. In
Proceedings of the 2008 international workshop on Functional and declarative programming in
education, FDPE °08, pages 13-20. ACM, 2008.


http://www.ccs.neu.edu/home/matthias/htdc.html
http://www.ccs.neu.edu/home/matthias/htdc.html
http://c0.typesafety.net/doc/c0-reference.pdf
http://c0.typesafety.net/doc/c0-reference.pdf
http://www.ccs.neu.edu/javalib/

S. Tobin-Hochstadt & D. Van Horn 15

[23] Joel Spolsky. The Perils of JavaSchools, 2005. URL http://www.joelonsoftware.com/
articles/ThePerilsofJavaSchools.html.


http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html

16 From Principles to Practice with Class in the First Year

A Worlds and the State pattern

#lang class/1
(require 2htdp/image class/universe)

;3 A World is one of

;; — (new landed-world)

;3 — (new downworld Number)
(define-class landed-world

;3 to-draw : -> Image
(define (to-draw)
(place-image
(circle 10 "solid" "red")
390 200 (empty-scene 400 400))))

(define-class downworld
(fields n)

;; on—tick : -> World
(define (on-tick)
(cond [(zero? (this . n))
(new landed-world)]
[else
(new world (subl (this . n)))]1))

;3 to-draw : -> Image
(define (to-draw)
(place-image
(circle 10 "solid" "red")
(this . w) 200 (empty-scene 400 400)))

;3 on-key : KeyEvent -> World
(define (on-key k) (new world 400)))

(big-bang (new downworld 400))



	Introduction
	Background: the context at Northeastern
	A first course on How to Design Programs
	The goal of the second course

	A small shift of focus
	The basics of objects
	Where did the cond go?
	Worlds and animations
	Language levels

	From principles to industrial languages
	Functional Java
	Traditional Java
	Beyond Traditional Java

	Related work
	Program by Design and ProfessorJ
	Other transitions
	Other approaches to Java

	Experience and outlook
	Worlds and the State pattern

