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Abstract

Programming languages has recently experienced a renaissance, especially in the

field of untyped scripting languages. But when scripts written in untyped languages

grow large, they may also grow difficult to maintain. To improve the maintainability of

untyped language programs, we propose porting portions of them into typed languages.

To validate the feasability of this approach, we have developed Typed Scheme, a typed

sister language to PLT Scheme. Typed Scheme provides smooth and sound interoperabil-

ity with untyped PLT Scheme. It features a type system that supports idiomatic Scheme

programming, so that the porting process is relatively straightforward.

1 The Challenge of Untyped Languages

Under the heading of “scripting languages”, a variety of new, untyped, programming lan-

guages has become popular, and even pervasive, in web- and systems-related fields [3, 9, 25,

28, 41, 43]. As a result, programmers often create scripts that then grow into large applica-

tions. Programmers are also beginning to notice, however, that untyped scripts are difficult

to maintain over the long run. The lack of types means a loss of design information that

programmers must recover every time they wish to change existing code.

One possible solution is to rewrite the program in a typed language. This requires vast

investment of time and resources. It also imposes heavy transition costs. Maintenance must

be performed on two systems during the transition, and successfully reimplementing all

features in a new language is extremely difficult. Also, the programmers must adjust to a

new language and style of programming. Instead of this, I propose a gradual migration from

untyped to typed code.

This brings me to my thesis:
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Module-by-module porting of code from an untyped language to a typed sister

language allows for an easy transition from untyped scripts to typed programs.

In support of this thesis, I have developed Typed Scheme [7, 36, 38, 39], a typed sister

language of PLT Scheme. In the remainder of this document, I describe Typed Scheme as

well as the challenges that remain. First, I describe how Typed Scheme interoperates with

untyped code, and the current design of the type system. Following that, I outline additional

challenges for the type system that I plan to address, and I discuss empirical validation. The

proposal concludes with related work and a schedule.

1.1 A Brief Introduction to PLT Scheme

Since Typed Scheme is built on top of and alongside PLT Scheme, I begin with a review of

the basic outlines of PLT Scheme. Fundamentally, it is a dialect of Scheme [34], enriched

with a sophisticated module and macro system, as well as numerous primitive operations

including file system access, network transmission, and GUI construction.

PLT Scheme programs are written in modules, as follows:

#lang scheme ; book-module
(define-struct book (author title))
(provide (struct book))

#lang scheme/gui ; print-module
(require media-module)
; Displays information about books
(define (print m)
(cond [(book? m)

(message-box (book-author m) (book-title m))]
[else (error ’bad-input)]))

This small examples demonstrates many of the most important features. The first line of each

module specifies that what language the module is written in. Here, the first module is writ-

ten in the scheme language, which provides a wide variety of functionality by default. The

second is in the scheme/gui language, which includes graphical elements. The flexibility

of specifying the language on a module-by-module basis is key for Typed Scheme.

The first module defines a book structure with two fields, using the define-struct form.

It also provides this structure to other modules.

The second module requires the first, gaining access to the earlier definition. It then uses

the match macro, which provides pattern matching facilities, to destructure the input book.

The GUI is then used to display the data. All of these features fit together to make a powerful

and expressive language.
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2 Interoperability between Typed and Untyped Modules

A key component of incremental migration from typed to untyped code is interoperbility

between typed and untyped code. Programmers should be able to freely intermix typed and

untyped modules, without needing to concern themselves with the ordering of dependencies.

Typed Scheme therefore supports interoperation across the typed/untyped boundary, in both

directions.

2.1 Importing from the Untyped World

When a typed module imports functions from an untyped module—say PLT Scheme’s ex-

tensive standard library—Typed Scheme requires dynamic checks at the module boundary.

Those checks are the means to enforce type soundness. In order to determine the correct

checks and in keeping with our decision that only binding positions in typed modules come

with type annotations, we have designed a typed import facility. For example,

(require/typed scheme/base add1 (Number -> Number))

imports the add1 function from the scheme/base library with the given type. The re-
quire/typed facility expands into dynamically checked contracts, which are enforced as

values cross module boundaries [11].

For a more complete example, consider the untyped module

#lang scheme
(define (sq x) (* x x))
(provide sq)

and the typed module

#lang typed-scheme
(require/typed sq (Number -> Number) square-lib)
(sq 5)

The second, typed, module declares the type that it expects the sq function to have, and

a contract enforcing that type is applied at the boundary between modules. If we add the

expression (sq "five") to the typed code, Typed Scheme signals a static type error. If we

instead change the definition of sq to

(define (sq x) (if (= x 5) "whoops" (* x x)))

Then when running the typed module, we get a dynamic contract error, which blames the

untyped module for delivering a string where a number is promised.

An additional complication arises when an untyped module provides an opaque data struc-
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ture, i.e., when a module exports constructors and operators on data without exporting the

structure definition itself. In these cases, we do not wish to expose the structure merely for

the purposes of type checking. Still, we must have a way to dynamically check this type at

the boundary between the typed and the untyped code and to check the typed module.

To support such situations, Typed Scheme provides a facility for creating opaque types,

which require nothing but the predicate for testing membership. This predicate can be triv-

ially turned into a contract, but no operations on the type are allowed, other than those

imported with the appropriate type from the untyped portion of the program.

Here is a sample usage of the special form for importing a predicate and thus defining an

opaque type:

(require/opaque-type Doc document? xml)

It imports the document? function from the xml library and uses it to define the Doc type.

The rest of the module can now import functions with require/typed that use Doc as a

type.

2.2 Exporting to the Untyped World

When a typed module is required by untyped code, other considerations come into play.

Again, the typed code must be protected, but we already know the necessary types. There-

fore, in untyped contexts, typed exports are automatically guarded by contracts, without

additional annotation effort by the programmer.

Consider the above example, reversed:

#lang typed-scheme
(: sq (Number -> Number))
(define (sq x) (* x x))
(provide sq)

#lang scheme
(require square-lib)
(sq 5)
(sq "five")

The type of sq, (Number -> Number) is automatically converted to a contract (the same

contract created in the earlier example) when square-lib is required into an untyped con-

text. This contract allows the first use of sq, but (sq "five") produces a contract error,

which blames the untyped module for applying a function to a string, even though its contract

requires numbers.

Unfortunately, because macros allow unchecked access to the internals of a module, macros
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defined in a typed module cannot currently be imported into an untyped context.

2.3 Contracts and Type Soundness

Systems that consist of both typed and untyped code may, of course, signal errors concern-

ing primitive operations at runtime. Our type system still provides guarantees about the

typed portion of the code, however. These guarantees can be expressed using the notion of

blame [11]. This insight gives the following generalization of the type soundness theorem.1

If e is a program with typed modules t and untyped modules u, then if execution

of e signals an error concerning primitive operations, that error blames some

untyped module ui.

This theorem can be made fully formal and proved for a calculus representing the core of

the Typed Scheme’s interoperability features [38].

3 A Type System for Idiomatic Scheme

Typed Scheme ought to support typed refactoring with a type system that directly accom-

modates many of the standard Scheme programming idioms. In principle, Scheme program-

mers need only annotate structure and function headers with types to move a module into

the Typed Scheme world; on occasion, they may also have to define a type alias to keep type

expressions concise. On rare occasions, the must change the code of functions so that the

type checker can verify the types. For this purpose, the type system combines true union

types, recursive types, first-class polymorphic functions, and the novel discipline of occur-

rence typing. Additionally, Typed Scheme infers types for instantiations of polymorphic

functions, based on locally-available type information.

3.1 Basic Typed Scheme

Disciplined Scheme programmers typically describe the structure of their data in comments.

For example, a media data type, extending the book from earlier, might be represented as:

; Media is either a book or a cd
(define-struct book (author title))
(define-struct cd (artist tracks))

1The usual provisions to type soundness theorems apply. See footnote 2.
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To accommodate this style in Typed Scheme, programmers can specify true, untagged unions

of types:

(define-type-alias media (U book cd))
(define-struct: book ([author : String] [title : String]))
(define-struct: cd ([artist : String] [tracks : (Listof String)]))

Typed Scheme also supports explicit recursive types, which are necessary for typing uses of

cons pairs in Scheme programs. This allows the specification of both fixed-length hetero-

geneous lists and arbitrary-length homogeneous lists, or even combinations of the two.

3.2 Occurence Typing

Typed Scheme introduces occurrence typing, which allows the types of variable occurrences

to depend on their position in the control flow graph.

Consider the following illustrative program fragment, using the data defined above, which

extends the earlier print function

; media -> Void
; Displays information about media
(define (print m)
(cond [(book? m)

(message-box (book-author m) (book-title m))]
[(cd? m) (message-box "cd" (cd-artist m))]
[else (error ’bad-input)]))

As the informal original data definition states, a media item is either a book or a cd.

The definition illustrates several key elements of the way that Scheme programmers reason

about their programs: ad-hoc type specifications, true union types, and predicates for type

testing. No datatype specification is needed to introduce the sum type on which the function

operates. Instead there is just an “informal” data definition and contract [10], which gives

a name to a set of pre-existing data, without introducing new constructors. Further, the

function does not use pattern matching to dispatch on the union type. All it uses is a predicate

that distinguishes the two cases: the first cond clause, which deals with the parameter m as a

book and the second one, which treats it as a cd.

Here is the corresponding Typed Scheme code:

(: print (media -> Void))
(define (print m)
(cond [(book? m)

(message-box (book-author m) (book-title m))]
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[(cd? m) (message-box "cd" (cd-artist m))]
[else (error ’bad-input)]))

This version explicates both aspects of our informal reasoning. The type media is an abbre-

viation for the true union intended by the programmer; naturally, it is unnecessary to intro-

duce type abbreviations like this one; we do so for convenience. Furthermore, the defintion

of print is not modified at all; Typed Scheme type-checks each branch of the conditional

appropriately. In short, only minimal type annotations are required to obtain a typed version

of the original code, in which the informal, unchecked comments become statically-checked

design elements.

More complex reasoning about the flow of values in Scheme programs is also accomodated

in our design:

(foldl add-book-to-library empty-library
(filter book? list-of-media))

This code selects all the books from a list of media, and then adds them one by one to an

initially empty library, perhaps being prepared for display on a web page. Even though the

initial list-of-media may contain media that are not books, those are removed by the

filter function. The resulting list contains only books, and is an appropriate argument to

add-book-to-library.

This example demonstrates a different mode of reasoning than the first; here, the Scheme

programmer uses polymorphism and the argument-dependent invariants of filter to ensure

correctness.

No changes to this code are required for it to typecheck in Typed Scheme. The type system

is able to integrate the two modes of reasoning the programmer uses with polymorphic func-

tions and occurrence typing. In contrast, a more conventional type system would require the

use of an intermediate data structure, classified with an option type, to ensure conformance.

3.3 Local Type Inference

Typed Scheme supports first-class polymorphic functions, a mechanism that Scheme pro-

grammers often implicitly assume when reasoning about many library functions. For exam-

ple, list-ref has the type

(All (α) ((Listof α) Integer -> α))

It can be defined in Typed Scheme as follows:

(: list-ref (All (α) ((Listof α) Integer -> α)))
(define (list-ref l i)

(cond [(not (pair? l)) (error "empty list")]
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[(= 0 i) (car l)]
[else (list-ref (cdr l) (- i 1))]))

The example illustrates two important aspects of polymorphism in Typed Scheme. First,

the abstraction over types is explicit in the polymorphic type of list-ref but implicit in

the function definition. Second, typical uses of polymorphic functions, e.g., car and list-
ref, do not require explicitly type instantiation. Instead, the required type instantiations are

synthesized from the types of the arguments.

Argument type synthesis uses the local type inference algorithm of Pierce and Turner [30].

It greatly facilitates the use of polymorphic functions and makes conversions from Scheme

to Typed Scheme convenient, while dealing with the subtyping present in the rest of the type

system in an elegant manner. Furthermore, it ensures that type inference errors are always

locally confined, rendering them reasonably comprehensible to programmers.

4 Research

Preliminary evaluations of Typed Scheme suggest that it can cope with a large amount of the

existing PLT Scheme code base, but also reveal numerous challenges. This section addresses

two of these, and then presents a research plan.

4.1 Variable-arity Functions

Like many other untyped languages, PLT Scheme provides a rich variety of methods for

defining functions which have multiple arities. The simplest of these is case-lambda, which

allows functions with multiple, fixed arities. But Scheme, and therefore Typed Scheme, also

allow functions with variable arity, allowing for power of abstraction not found in other

typed languages.

4.1.1 Uniform Variable-Arity Functions

Uniform variable-arity functions expect their rest parameter to be a homogeneous list. Con-

sider the following four examples:

(: + (Integer * -> Integer))
(: - (Integer Integer * -> Integer))
(: string-append (String * -> String))
(: list (All (α) (α * -> (Listof α))))

The syntax SomeType * for the type of rest parameters alludes to the Kleene star for regular

expressions. It signals that in addition to the other arguments, the function takes an arbitrary
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number of arguments of the given base type. The form SomeType * is dubbed a starred

pre-type, because it is not a full-fledged type and may appear only as the last element of a

function’s domain.

Here is a possible definition of variable-arity + in Typed Scheme, using binary-+, a hypo-

thetical binary addition operator:

(define (+ . xs)
(if (null? xs)

0
(binary-+ (car xs)

(apply + (cdr xs)))))

Typing this definition is straightforward. The type assigned to the rest parameter of starred

pre-type tau * in the body of the function is (Listof tau), and it maps to an already-

existing type in Typed Scheme. In the above example, xs is has the starred pre-type Integer
*, and so xs has the type (Listof Integer) Thus, no further work is needed to handle

uses of such rest parameters.

4.1.2 Non-Uniform Variable-Arity Functions

For more sophisticated uses of rest parameters, more sophisticated types are needed. Con-

sider the function map. The PLT Scheme documentation describes (map proc lst ...)
as follows:

Applies proc to the elements of the lsts from the first elements to the last. The

proc argument must accept the same number of arguments as the number of

supplied lsts, and all lsts must have the same number of elements. The result

is a list containing each result of proc.

Note that there are potentially many list arguments, and the function is applied to as many

arguments as there are lists.

In Typed Scheme, map has the type

(: map
(All (γ α β ...)
((α β ... β -> γ) (Listof α) (Listof β) ... β -> (Listof γ))))

This introduces several new elements into the type system of Typed Scheme. First, the

binding of type variables indicates with ... that the type variable β can be instantiated with

any number of types. The further uses of β indicate that the first argument, the function,

takes precisely as many arguments as the number of lists provided as additional arguments.
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Instantiating the map function with the types Integer Boolean Integer Boolean results

in the type

((Integer Boolean Integer -> Boolean)
(Listof Integer) (Listof Boolean) (Listof Integer)
->
(Listof Boolean))

With this type, we can use map in all the ways that Scheme programmers expect. For exam-

ple, all of these applications typecheck correctly in Typed Scheme:

(map not (list #t #f #t))
(map = (list 1 20 300) (list 10 20 30))
(map make-book (list "Flatland") (list "A. Square") (list 1884))

Note that map is used at 3 different arities, and in the final example, the list elements are both

strings and numbers. 2

Typed Scheme also allows the definition of functions that use variable-arity polymorphism.

Here is the definition of fold-left from the R6RS [34]:

(: fold-left
(All (γ α β ... β)

((γ α β ... β -> γ) γ (Listof α) (Listof β) ... β -> γ)))
(define (fold-left f c as . bss)
(cond [(and (null? as) (andmap null? bss)) c]

[(or (null? as) (ormap null? bss))
(error ’fold-left "wrong length lists")]

[else (apply fold-left
(apply f c (car as) (map car bss))
(cdr as)
(map cdr bss))]))

This generalizes the familiar list fold to work over arbitrary numbers of lists. Typed Scheme

is able to express and check the constraint that fold-left must be supplied a procedure

with the appropriate arity for the number of list arguments. It is also able to verify that

the body of fold-left correctly implements these constraints. To accomplish this, Typed

Scheme must, for example, understand that the list produced by (map cdr bss) produces

a list of lists precisely as long as bss.

Finally, dotted pre-types are not merely useful in function types. The multiple-value return

feature of Scheme also integrates nicely with dotted pre-types. For example, the values
function, which is the fundamental constructor for multiple-value return, has the type

2The examples also demonstrate how typechecking can eliminate the need for some but not all run-time checks.

A map that is applied to two lists must still dynamically enforce the equal-length constraint.
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(: values
(All (α ...) (α ... α -> (Values α ... α))))

and the call-with-values function has the type

(: call-with-values
(All (β α ...) ((-> (Values α ... α)) (α ... α -> β) -> β)))

4.2 Keyword Arguments

PLT Scheme provides programmers the ability to define and use functions that take keyword

arguments. For example, the open-output-file procedure takes a filename as a fixed

argument, as well as a #:mode keyword argument. The following are all valid applications

of open-output-file.

(open-output-file "foo.txt")
(open-output-file "foo.txt" #:mode ’binary)
(open-output-file #:mode ’text "foo.txt")

Since keyword arguments are used pervasively in PLT Scheme, Typed Scheme must also

support them. The type of open-output-file is therefore

(: open-output-file
(String #:mode (U ’binary ’text) -> Output-Port))

here the presence of keywords in the type of open-output-file indicates that the func-

tion accepts keyword arguments. Given this type for open-output-file, all of the above

examples typecheck successfully.

Additionally, the handling of the apply function must take into account the presence of

keyword arguments, and the keyword-apply function must be handled in Typed Scheme.

4.3 Practical Evaluation

To determine whether Typed Scheme is practical and whether converting PLT Scheme pro-

grams is feasible, I conducted a series of small experiments in porting existing Scheme

programs of varying complexity to Typed Scheme. I plan to continue this on a larger scale

to validate the overall design an implementation of Typed Scheme.

4.3.1 Small Experiments

I have ported several thousand lines of small Scheme programs from a wide variety of

sources to Typed Scheme. This included code from How to Design Programs [10] as well
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as The Little Schemer [15] and The Seasoned Schemer [14], and also numerous assignments

from an undergraduate programming language class. These experiments indicate that Typed

Scheme can handle pedagogical Scheme code quite easily, with the exception of complex

invariants on the structure of S-expressions.

I also ported3 several larger programs, including a multi-thousand line multi-player game im-

plementation. This effort again demonstrated that Typed Scheme can handle most idiomatic

PLT Scheme code. The only changes required are in places where the original program

makes potentially-unsafe assumptions.

4.3.2 Larger Experiments

My preliminary experiments suggest that Typed Scheme is potentially effective. But to truly

validate its usefullness, more extensive study is required. I will therefore port portions of the

existing PLT Scheme infrastructure, including portions of DrScheme [12], to Typed Scheme.

This effort will determine whether Typed Scheme scales to large programs, consisting of tens

of thousands of lines and hundreds of modules.

Additionally, metrics are needed to determine the effectiveness of Typed Scheme in finding

bugs, documenting code, and the effort required to do so. I will therefore develop such

numerical measurements and apply them all of the porting efforts conducted.

4.4 Research Plan

My schedule for completing the work outlined in this proposal is as follows:

• September-October 2008: Port portions of DrScheme to Typed Scheme

• November 2008-January 2009: Implement keyword arguments and variable-arity

polymorphism

• February-March 2009: Journal paper on Typed Scheme design

• April-May 2009: Paper on experience

• June-July 2009: Writing

• August 2009: Defense

3Ivan Gazeau, a student from ENS, provided valuable assistance with the porting effort.
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5 Related Work

The integration of typed and untyped languages has a long history, and Typed Scheme bor-

rows from many systems to develop its unique type system. In this section, I survey the most

directly related work, both in typechecking Scheme, and in the predecessors of the features

of Typed Scheme.

5.1 Types and Untyped Languages

The history of programming languages knows many attempts to add or to use type infor-

mation in conjunction with untyped languages. Starting with LISP [35], language designers

have tried to include type declarations in such languages, often to help compilers, sometimes

to assist programmers.

Beginning with Cartwright’s Typed Lisp [4], several projects aimed to provide a typed ver-

sion of Scheme or Lisp. Other examples include Wand’s Semantic Prototyping System [44],

Haynes’ Infer system [19] and the system of Leavens et. al. [22]. None of these systems,

however, attempted to accommodate Scheme programming idioms, nor did they provide

sound interoperation with untyped code.

Several systems have attempted to add type inference directly to existing Scheme programs.

From the late 1980s until recently, people have studied soft typing [5, 1, 45, 20, 13, 26],

a form of type inference to assist programmers debug their programs statically. This work

has mainly been in the context of Scheme but has also been applied to Erlang [24] and

Python [32]. Static analysis has also been applied to finding bugs via “program comprehen-

sion” [27]. Finally, the slogan of “gradual typing” has resurrected the LISP-style annotation

mechanisms and has had a first impact with its tentative inclusion in Perl6 [37].

The goal of the soft typing research is to provide an optional type checker for programs

in untyped languages. One key premise is that programmers shouldn’t have to write down

type definitions or type declarations. Soft typing should work via type inference only, just

like ML. Another premise is that soft type systems should never prevent programmers from

running any program. If the type checker encounters such an ill-typed program, it should

insert run-time checks that restore typability and ensure that the type system remains sound.

In contrast, Typed Scheme is a explicit and static type system for a language that can interop-

erate with Scheme. We believe that this reduces the complexity of the overall system, makes

it computationally more tractable, and easier for programmers to use and understand. Most

importantly, types that must be inferred by an analysis cannot play the role of mandatory

and checked documentation. However, Typed Scheme has learned from these earlier efforts.

In particular, both Wright [45] and Flanagan [13] provided a form of syntactic if-splitting

which foreshadowed the occurrence typing of Typed Scheme.

The recent gradual typing research [21, 33, 42] has mostly consisted of theoretical inves-
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tigations of the properties of small calculi in which typed and untyped code can be freely

intermixed. Unfortunately, this strategy prevents programmers from drawing clear bound-

aries between typed and untyped code. Additionally, it is not yet clear how to scale a

gradually-typed system up to a full-fledged programming language without efforts such as

our purpose-built type system with occurence typing, non-uniform variable-arity functions,

keyword arguments and other features neccessary to accomodate programs from existing

untyped languages.

5.2 Type System Features

Many of the type system features we have incorporated into Typed Scheme have been exten-

sively studied in isolation. Polymorphism in type systems dates to Reynolds [31]. Recursive

types were studied by Amadio and Cardelli [2], and union types by Pierce [29], among many

others. Intensional polymorphism appears in calculi by Harper and Morrisett [18], among

others. Some of the design of the type system for occurrence typing was inspired by prior

work on effect systems [17]. Typing variables differently in different portions of a program

was discussed by Weirich et. al. [6]. However, occurrence typing as presented here has not

been previously considered.

Several other attempts have been made to handle non-uniform variable-arity polymorphism,

but no typed language supports them in a systematic an principled manner. Dzeng and

Haynes [8] come close to our goal of providing a practical type system for variable-arity

functions as apart of the Infer system for type-checking Scheme [19]. However, their system

does not handle subtyping, and cannot typecheck the defintions of several key examples.

Tullsen [40] attempts to bring non-uniform variable-arity functions to Haskell via the Zip

Calculus. This work uses a restricted form of dependent types. It again does not seem to be

able to handle several of the most important functions without further extension, and has not

been tried on an actual Haskell code base.

Keyword arguments are already present in some typed languages [23] and have also been

studied in a theoretical framework [16]. However, these systems are complicated by the

need to support auto-currying.

6 Conclusion

The recent explosion of scripting languages, and thus of scripts, has led to a need for migra-

tion paths to maintainable programs. I have proposed Typed Scheme, a typed sister language

of PLT Scheme, as both a strategy and an example. Typed Scheme’s interoperability features

and type system will allow it to integrate smoothly and painlessly with existing PLT Scheme

code, facilitating easy migration.

In the future, migration from untyped scripts to typed programs will not just happen for
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Scheme. The specific features I have proposed for Typed Scheme may not carry over to Perl

or Javascript, but the fundamental ideas of sound interoperability using contracts, and type

systems that accomodate idiomatic practice can.
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