CSG399 Problem Set 3

Jiangzhuo Chen

March 9, 2004

1 PTAS for Independent Set

An independent set of an undirected graph G is a subset V' of vertices such that no two vertices in V' have an edge in G. The IndependentSet problem is to find a maximum-size independent set in G. It is known that IndependentSet is NP-complete. In this problem, we investigate the approximability of IndependentSet.

Define the *product* of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ as G = (V, E), where

$$V = \{ \langle v_1, v_2 \rangle : v_1 \in V_1, v_2 \in V_2 \},\$$

and there is an edge between vertices $\langle u_1, u_2 \rangle$ and $\langle v_1, v_2 \rangle$ in G if either $u_1 = v_1$ and $(u_2, v_2) \in E_2$ or $(u_1, v_1) \in E_1$. For a positive integer m, let G^m be defined by the recurrence relation $G^{i+1} = G^i \times G$ and $G^1 = G$.

- (a) Prove that G has an independent set of size k if and only if G^m has an independent set of size k^m .
- (b) Give a polynomial-time algorithm to construct an independent set of G of size $\lceil k^{1/m} \rceil$ from any independent set of G^m of size k.
- (c) Using parts (a) and (b), argue that if there exists a constant c such that there is a polynomial-time c-approximation algorithm for INDEPENDENTSET, then there exists a PTAS for INDEPENDENTSET.

It is easy to see $V(G^m) = V(G)^m$. There are two ways to decide $E(G^m)$. One is described in the problem statement. The other is my "misunder-standing".

1. Vertices (v_1, \dots, v_m) and (u_1, \dots, u_m) are adjacent iff the first different pair of components are adjacent in G, i.e., $\exists i, \forall j < i, v_j = u_j, v_i \neq u_i, (v_i, u_i) \in E(G)$.

2. Vertices (v_1, \dots, v_m) and (u_1, \dots, u_m) are adjacent iff any pair of (different) components are adjacent in G, i.e., $\exists i, (v_i, u_i) \in E(G)$.

The claims are proven for both understandings, with the **same arguments**.

- (a) G has an independent set of size $k \iff G^m$ has an independent set of size k^m .
 - \Rightarrow : Suppose $I = \{w_1, \dots, w_k\}$ is an independent set of G. Then I^m is an independent set of G^m , since $\forall v_i, u_i \in I$, v_i and u_i are not adjacent in G.
 - \Leftarrow : Argue by contradiction. The arguments also provide an algorithm for part (b). Suppose $I' \subset V(G)^m, |I'| = k^m$ is an independent set of G^m , but the maximum independent set of G has size at most k-1. Look at the first components of the vertices in I'. They only have at most k-1 distinct values, otherwise these $\geq k$ values form an independent set of G. So there exists $I'_1 \subseteq I'$ of size at least $k^{m-1}+1$ whose elements have the same first components. Use the same argument, it is easy to see that there exists $I'_i \subseteq I'_{i-1} \subseteq I'$ of size at least $k^{m-i}+1$ whose elements have the same first i components. Therefore, there exists $I'_m \subseteq I'$ of size at least 2 whose elements are all the same, meaning these two vertices are the same, i.e., $|I'| < k^m$, a contradiction.
 - Given an independent set I' of G^m of size k, the algorithm scans the components of the elements of I' from the first to the last.
 - 1. $i \leftarrow 1, I'_0 \leftarrow I'$, FOUND = FALSE
 - 2. While not FOUND do the following:
 - (a) I =the set of distinct values of the ith components of the vertices in I'_{i-1}
 - (b) If $|I| \ge \lceil k^{1/m} \rceil$, FOUND = TRUE
 - (c) Else find $v \in I'_{i-1}$ which has the maximum number of occurence as the *i*th components of the vertices in I'_{i-1} ; find $I'_i \subseteq I'_{i-1}$ whose elements have v as their *i*th components.
 - (d) i++
 - 3. Output I

The proof for the \Leftarrow direction of part (a) guarantees the correctness of the algorithm.

• Suppose A is a polytime c-approximation algorithm for INDEPENDENTSET. Suppose the algorithm defined in part (b) is B. Let H(G) denote the optimal solution for G. Let $f(\cdot)$ be a function $f: \mathbb{R} \mapsto \mathbb{N}$. Define algorithms D as follows. On input (G, ε) , construct $G^{f(\varepsilon)}$ in either way; output $B\left(A(G^{f(\varepsilon)})\right)$. We need to determine $f(\cdot)$ such that $C(G) \geq (1-\varepsilon)H(G)$. We have:

$$A(G^{f(\varepsilon)}) \geq \frac{1}{c}H(G^{f(\varepsilon)})$$

 $H(G^{f(\varepsilon)}) = H(G)^{f(\varepsilon)}$

So

$$\begin{split} C(G) &= B\left(A(G^{f(\varepsilon)})\right) = \left\lceil \left(A(G^{f(\varepsilon)})\right)^{1/f(\varepsilon)} \right\rceil \\ &\geq \left\lceil \left(\frac{1}{c}H(G^{f(\varepsilon)})\right)^{1/f(\varepsilon)} \right\rceil = \left\lceil \left(\frac{1}{c}\right)^{1/f(\varepsilon)} \left(H(G)^{f(\varepsilon)}\right)^{1/f(\varepsilon)} \right\rceil \\ &\geq \left(\frac{1}{c}\right)^{1/f(\varepsilon)} H(G) \end{split}$$

For $C(G) \ge (1 - \varepsilon)H(G)$, we only need $\left(\frac{1}{c}\right)^{1/f(\varepsilon)} \ge 1 - \varepsilon$, which can be achieved by defining

$$f(\varepsilon) = \left\lceil \frac{1}{\log_c \frac{1}{1 - \varepsilon}} \right\rceil$$

_