1 Solution of PS1-4

1.1 Self-reducibility of Maximum Matching

For maximum matching, the decision version is: Given a graph G = (V, E) and an integer k, decides whether the maximum matching of G, denoted by M(G), has size greater than or equal to k. The self-reducibility of maximum matching can be proved as follows.

Given a graph G = (V, E), we can call oracle $O(\log(|E|))$ to decide |M(G)| by binary searching. Then, we can use the following procedure to find the maximum matching:

- 1. $S \leftarrow \emptyset, G \leftarrow G(V, E), m \leftarrow |M(G)|$
- 2. If m = |E|, then $S \leftarrow S \cup E$, return S; Otherwise
- 3. Pick arbitrary edge $e \in E$, let $G' \leftarrow G \{e\}$
- 4. Ask oracle whether $|M(G')| \geq m$
- 5. If yes, let $G \leftarrow G'$, repeat from step 3; Otherwise
- 6. Let $S \leftarrow S \cup \{e\}, G \leftarrow G' \{all\ edges\ adjacent\ to\ e\ in\ G\},\ m \leftarrow m-1,$ repeat from step 2

This procedure will find a maximum matching for G. It will call oracle $O(|E| + \log(|E|))$ times. For each edge picked, finding adjacent edge costs O(|E|). Each edge will be picked at most once, so the total time cost is polynomial to the size of G.

1.2 Self-reducibility of Shortest Superstring

For shortest superstring, the decision version is: Given a set of strings $S = \{s_1, s_2, \ldots, s_n\}$ and an integer l, decides whether the shortest superstring of S, denoted by $\Gamma(S)$, has length less than or equal to l. The self-reducibility of shortest superstring can be proved as follows.

Given a set $S = \{s_1, s_2, \dots, s_n\}$, we can call oracle $O(\log(\sum_{i=1}^n |s_i|))$ to decide $|\Gamma(S)|$ by binary searching. Then, we can use the following procedure to find the shortest superstring:

1.
$$S \leftarrow \{s_1, s_2, \dots, s_n\}, l \leftarrow |\Gamma(S)|$$

- 2. If $l = \sum_{s_i \in S} |s_i|$, then return $\bigwedge_{s_i \in S} s_i$, where \bigwedge means the concatenation; Otherwise
- 3. Orderly go through pair (s_i, s_j) , $i \neq j$. For all possible string s_{ijk} , which is constructed from overlapping the last k chars of s_i with the first k chars of s_j , let $S' \leftarrow S \{s_i, s_j\} \cup \{s_{ijk}\}$. Ask oracle whether $|\Gamma(S')| \leq l$.
- 4. If yes, $S \leftarrow S'$, repeat from step 2; Otherwise continue to next pair (s_i, s_j) or next s_{ijk} .

This procedure will find a shortest superstring for S. For each pair (s_i, s_j) , there are at most $|s_i|$ number of s_{ijk} . For each s_{ijk} , we call oracle once. So total call of oracle is $O((\sum_{i=1}^n |s_i|)^2)$. Other costs are linear, so the total time cost is polynomial.