\relax \citation{BollobasRiordan} \citation{BollobasRiordan} \@writefile{toc}{\contentsline {section}{\numberline {1}Review}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Portions of the lattice $L = \mathbb {Z}^2$ (solid lines) and the isomorphic dual lattice $L^*$}}{2}} \newlabel{fig:dual}{{1}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Four rectangles forming a square annulus}}{2}} \newlabel{fig:Annulus}{{2}{2}} \@writefile{toc}{\contentsline {section}{\numberline {2}Proof of Harris' Theorem}{2}} \bibstyle{plain} \bibdata{refs} \bibcite{BollobasRiordan}{1} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces A rectangle $R$ and square $S$ inside it, drawn with paths (solid curves) whose presence as open paths would imply $X(R)$}}{5}} \newlabel{fig:X(R)}{{3}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces The overlapping rectangles $R$ and $R'$ with the square $S$ in their intersection. The paths drawn show that $X(R)$ holds, as well as the reflected equivalent for $R'$. If $H(S)$ also holds, then so does $H(R \DOTSB \bigcup@ \slimits@ R')$}}{5}} \newlabel{fig:last}{{4}{5}}