College of Computer & Information Science Northeastern University CS 7880: Network Algorithms and Analysis Spring 2012 28 February 2012

Scribe: Bochao Shen

Percolation on \mathbb{Z}^2

The following notes are largely based on the excellent coverage of percolation by Bollobas and Riordan [BO06].

1 Critical Probability of Percolation on \mathbb{Z}^2

In the last lecture, we showed that the critical probability p_c of percolation on \mathbb{Z}^2 satisfies $p_c \geq \frac{1}{3}$. This time we will prove an upper bound of p_c such that $p_c \leq \frac{2}{3}$. First, we need to give out some definitions we will work with.

Definition 1. Let $\theta(p)$ denote the probability that there is an infinite connected component in \mathbb{Z}^2 with percolation probability p".

Definition 2. Let $\theta_x(p)$ denote the probability that there is an infinite connected component in \mathbb{Z}^2 containing the point $x \in \mathbb{Z}^2$ with percolation probability p. Specially, $\theta_0(p)$ denote the probability that there is an infinite connected component in \mathbb{Z}^2 containing the origin with percolation probability p.

To prove the above upper bound, we first show that $\theta_0(p) > 0$, $(p > \frac{2}{3})$. By the fact that $\theta(p) \geq \theta_0(p)$, we can say that $\theta(p) > 0$, $(p > \frac{2}{3})$. Then, by Kolmogrov 0-1 Law, we can claim that $\theta(p) = 1$, $(p > \frac{2}{3})$. Thus, $\frac{2}{3}$ is an upper bound for the critical probability p_c of percolation on \mathbb{Z}^2 .

Now, we prove that if $p > \frac{2}{3}$, then $\theta_0(p) > 0$.

First, we construct \mathbb{Z}^{2*} the dual of \mathbb{Z}^2 by putting a vertex in every face and placing an edge between two vertices corresponding to two faces which share an edge. Each edge in \mathbb{Z}^{2*} will intersect with a corresponding edge in \mathbb{Z}^2 . As we can see, each edge in \mathbb{Z}^{2*} has a one-to-one mapping with an edge in \mathbb{Z}^2 . Furthermore, we can say that each edge in \mathbb{Z}^{2*} is open (or selected) if and only if that corresponding edge in \mathbb{Z}^2 is closed (or not selected).

Second, we introduce a special subgraph of \mathbb{Z}^2 , B(m) a square box with side length 2m containing the vertices in $\{-m,\ldots,0,\ldots,m\}\times\{-m,\ldots,0,\ldots,m\}$. Now, we define two events G_m and F_m as following.

Definition 3. G_m : Event that every edge in B(m) is open.

Definition 4. F_m : Event that there is an open circuit in \mathbb{Z}^{2*} containing B(m) in its interior.

Now, we let M(n) denote the number of circuits of length n surrounding the origin. Since the number of paths of length n is no greater than $4 \cdot 3^{n-1}$, M(n) satisfies,

$$M(n) \le \# \text{ of starting points } \times 4 \cdot 3^{n-1}$$

 $< \text{Poly}(n) \cdot 4 \cdot 3^{n-1}.$ (1)

Then, the probability that there exists a circuit of length n around the origin that is open in \mathbb{Z}^{2*} . is no greater than $\operatorname{Poly}(n) \cdot 4 \cdot 3^{n-1}(1-p)^n \leq \operatorname{Poly}(n) \cdot 4 \cdot (3(1-p))^{n-1}$.

As we can see, $G_m \wedge \overline{F}_m \Rightarrow$; there is a shortest path of length $\geq m$ from the origin to the outside of the box B(m). So, the probability that there is a shortest path of length $\geq m$ from the origin to the outside of the box B(m) is greater than $\Pr(G_m) \cdot \Pr(\overline{F}_m)$.

$$\Pr(G_m) \cdot \Pr(\overline{F}_m) \ge \Pr(G_m) \cdot \left[1 - \sum_{n \ge 8m}^{\infty} 4 \cdot \operatorname{Poly}(n) (3(1-p))^{n-1}\right]. \tag{2}$$

By Eq. 2, when $p > \frac{2}{3}$, for sufficiently large m, we will have,

$$\sum_{n>8m}^{\infty} 4 \cdot \text{Poly}(n)(3(1-p))^{n-1} < 1.$$
 (3)

Meanwhile, $\Pr(G_m) = (p)^{4m^2} > 0$. Then, we can claim when $m \to \infty$, the probability that there is a shortest path of length $\geq m$ from the origin to the outside of the box B(m) is greater than zero. By the fact that this event implies that there is an infinite connected component in \mathbb{Z}^2 . Thus, the probability that there is an infinite connected component in \mathbb{Z}^2 . is greater than zero. By Kolmogrov 0-1 Law, we can say that when $p > \frac{2}{3}$, the probability that there is an infinite connected component in \mathbb{Z}^2 equals one. Hence, $\frac{2}{3}$ is an upper bound for the critical probability of percolation in \mathbb{Z}^2 .

2 Harris's Theorem: $\theta(\frac{1}{2}) = 0$

Definition 5. Let H(R) denote the event that there exists an open path crossing R horizontally. Similarly, let V(R) denote the event that there exists an open path crossing R vertically.

Definition 6. Let R^h denote the horizontal dual of R. Similarly, let R^v denote the vertical dual of R.

Lemma 1. Exactly one of the events of H(R) and $V(R^h)$ holds.

Corollary 1. Given R is a $k \times (l-1)$ rectangle, R' is a $(k-1) \times l$ rectangle, then we will have the following hold.

- i) $P_p\{H(R)\}+P_{1-p}\{V(R')\}=1$;
- ii) If R is an $(n+1) \times n$ rectangle, then $P_{\frac{1}{2}}\{H(R)\} = \frac{1}{2}$;
- $\mbox{iii) If S is $n\times n$ square, then $P_{\frac{1}{2}}\{H(S)\} = P_{\frac{1}{2}}\{V(S)\} \geq \frac{1}{2}$.}$

Proof:

- i) By Lemma 1, we will have $P_p\{H(R)\} + P_p\{V(R^h)\} = 1$. Observe that R^h in \mathbb{Z}^{2*} is isomorphic to R' in \mathbb{Z}^2 , and by the fact that the edge in \mathbb{Z}^{2*} is open if and only if the corresponding edge in \mathbb{Z}^2 is closed, we will have $P_p\{V(R^h)\} = P_{1-p}\{V(R')\}$ hold. Hence, $P_p\{H(R)\} + P_{1-p}\{V(R')\} = 1$.
- ii) By i), this can be immediately proved by setting $p = \frac{1}{2}$, k = l = n + 1.
- iii) By ii), given a $(n+1) \times n$ rectangle R, we will have $P_{\frac{1}{2}}\{H(R)\} = \frac{1}{2}$. Suppose S is a $n \times n$ square, we can see that H(R) implies H(S). Hence, we will have $P_{\frac{1}{2}}H(S) \geq P_{\frac{1}{2}}H(R) = \frac{1}{2}$. Similarly, we can get $P_{\frac{1}{2}}\{V(S)\} \geq \frac{1}{2}$.

Definition 7. Let $h_p(m,n)$ denote the probability that there exists a horizontal open crossing in a $m \times n$ rectangle with percolation probability p; Specifically, we let $h(m,n) = h_{\frac{1}{2}}(m,n)$.

Lemma 2. $h(6n, 2n) \ge 2^{-25}$.

Proof: We will cover this proof in the next lecture. \Box

Theorem 1 (Harris's Theorem). $\theta(1/2) = 0$.

Proof: First, construct four overlapping 6n by 2n rectangles in \mathbb{Z}^{2*} in the way in Fig. 1 (taken from [BO06].

By Lemma 2, the probability for an open crossing in each 6n by 2n rectangle is at least 2^{-25} . By FKG inequality (which will be covered in the next lecture), the probability for all four crossing in these four 6n by 2n rectangles is at least $\gamma = 2^{-100}$.

For $k \geq 1$, let A_k be the small square surrounded by those four 6n by 2n rectangles in \mathbb{Z}^{2*} which is centered on (1/2, 1/2). Meanwhile, the small centered square and the outer big square have radii 3^k and 3^{k+1} , respectively.

Now, let E_k be the event that A_k contains an open dual cycle surrounding the interior of A_k . Then $P(E_k) \geq \gamma$. Since those crossings surrounding A_k varying by k are disjoint, the events E_k are independent. If E_k holds, then no

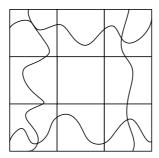


Figure 1: Four 6n by 2n rectangles overlapping

point inside A_k in \mathbb{Z}^2 can be reached from any point in \mathbb{Z}^2 outside the cycle formed by those four open crossing in \mathbb{Z}^{2*} . Thus, r_0 the radius of A_k is bounded by 3^{k+1} . Then, we will have

$$P\{r_0 \ge 3^{l+1}\} \le P\{\bigcap_{k=1}^{l} \overline{E}_k\} = \prod_{k=1}^{l} P(\overline{E}_k) \le (1-\gamma)^l.$$

$$(4)$$

By Eq. 4, we have

$$P\{r_0 = \infty\} \le P\{r_0 \ge n\} \le (1 - \gamma)^{\log_3 n - 1} = n^{\log_3(1 - \gamma)} / (1 - \gamma) \le n^{-c}.$$
 (5)

where, c is an constant for the above inequality's holding.

Now, we can see that $\theta_0(\frac{1}{2}) = 0$. Since it is an infinite lattice, by symmetry, for any vertex $x = (i, j) \in \mathbb{Z}^2$, we will have $\theta_x(1/2) = \theta_0(1/2) = 0$. And, there are countable infinite vertices in \mathbb{Z}^2 . Thus, $\theta(1/2)$ satisfies following,

$$\theta(1/2) = \sum_{\forall x = (i,j) \in \mathbb{Z}^2} \theta_x(1/2) = 0.$$
 (6)

References

[BO06] B. Bollobás and Riordan O. *Percolation*. Cambridge University Press, 2006.