Fall 2014 Handout 24 29 November 2014

Problem of the Week -22

Hardness of independent set

Recall that an *independent set* of an undirected graph G is a subset V' of vertices such that no two vertices in V' have an edge in G. The INDEPENDENTSET problem is to find a maximum-size independent set in G. We know that INDEPENDENTSET is NP-complete. In this problem, we investigate the approximability of INDEPENDENTSET.

Define the product of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ as G = (V, E), where

$$V = \{ \langle v_1, v_2 \rangle : v_1 \in V_1, v_2 \in V_2 \},\$$

and there is an edge between vertices $\langle u_1, u_2 \rangle$ and $\langle v_1, v_2 \rangle$ in G if either $u_1 = v_1$ and $(u_2, v_2) \in E_2$ or $(u_1, v_1) \in E_1$. For a positive integer n, let G^n be defined by the recurrence relation $G^{i+1} = G^i \times G$ and $G^1 = G$.

- (a) Prove that G has an independent set of size k if and only if G^t has an independent set of size k^t
- (b) Give a polynomial-time algorithm to construct an independent set of G of size $\lceil k^{1/t} \rceil$ from any independent set of G^t of size k.
- (c) Using parts (a) and (b), argue that if there exists a constant c such that there is a polynomial-time c-approximation algorithm for INDEPENDENTSET, then one can obtain an arbitrarily good approximation $(1 + \varepsilon)$ -factor for $\varepsilon > 0$ arbitrarily small for INDEPENDENTSET in polynomial time.