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Problem we want to solve

Given:
– a point-robot (robot is a point in space)
– description of obstacle space and free space
– a start configuration and goal region

Find:
– a collision-free path from start to goal

workspace configuration space
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Problem we want to solve



Method #1: Visibility Graphs

n = num of obstacle vertices



Question

Can you think of an n^3 algorithm to compute the visibility graph?



Method #2: Generalized Voronoi Diagram



Method #2: Generalized Voronoi Diagram



Question

How many regions in a voronoi diagram with n objects?



Method #2: Generalized Voronoi Diagram



Method #3: Exact Cell Decomposition



Method #3: Exact Cell Decomposition



Question

Do you need the vertices at the center of the trapezoids? Why/Why not?



Method #4: Uniform Approximate Cell 
Decomposition

c

Uniform cell shape: e.g. wavefront planner



Method #5: Quadtrees

Non-Uniform cell shape: e.g. quadtree decomposition



Method #5: Quadtrees

define G = Decompose(G,resolution):
1. if G null:
2. create coarse grid
3. collision-check G
4. for all occupied cells c in G:
5. delete c from G
6. subdivide c into four cells (sub)
7. add sub into G
8. collision-check sub

define FindPath(maxresolution):
1. for resolution = coarse to maxresolution:
2. G = Decompose(G,resolution)
3. if Check-for-path(G) == True:
4. Success!

Collision-check: check whether 

each cell is completely free or not

Why do you think this method is called “quadtree”?



Method #5: Octomaps

Same as quadtrees, but in three dimensions...



Examples of solutions found using octomaps



Exact vs approximate cell decomposition



Method #6: Potential Functions
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Method #6: Potential Functions



Method #6: Potential Functions

After computing U, follow the negative gradient:



Potential Function Limitations



Potential Function Limitations



Applications to manipulators

Compute potential function in Cartesian space:

Project into joint space:

Compute goal velocities at different points on the arm:
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Pull eff toward goal and 

away from obstacles

Push x1 and x2 away 

from obstacles



Applications to manipulators
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Can you draw a bug-trap-like scenario where this approach won’t work?
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