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Problem we want to solve

Given:

— a point-robot (robot is a point in space)

— description of obstacle space and free space
— a start configuration and goal region

Find:
— a collision-free path from start to goal
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Problem we want to solve

Given:

— configuration space C

— free space Cfyee

— start state Tinit € Crree
— goal region X goa1 C Cree

Find:
— a collision-free path o, such that (0) = Z;n5: and (1) € Xgoar

workspace configuration space
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Problem we want to solve

Motion planning is sometimes also called piano mover's problem



Method #1: Visibility Graphs

Idea: construct a path as a polygonal line
connecting ¢, and ¢ through vertices of C,,

Existence proof for such paths, optimality
One of the earliest path planning methods
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Best algorithm: O’ log n)

N = num of obstacle verticesj
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Question

Can you think of an n”3 algorithm to compute the visibility graph?



Method #2: Generalized Voronoi Diagram

= Defined to be the set of points ¢ whose
cardinality of the set of boundary points of
C ,. with the same distance to ¢ is greater
than 1

= |Let us decipher
this definition...

= Informally:
the place with the
same maximal
clearance from
all nearest obstacles




Method #2: Generalized Voronoi Diagram

= Geometrically:

two closest points

one closest point

clearance(q) * q

= For a polygonal C,,,, the Voronoi diagram
consists of (n) lines and parabolic segments

= Naive algorithm: O®?), best: O log n)



Question

How many regions in a voronoi diagram with n objects?




Method #2: Generalized Voronoi Diagram

= Voronoi diagrams have been well studied
for (reactive) mobile robot path planning

= Fast methods exist to compute and update
the diagram in real-time for low-dim. C's

* Pros: maximize clear-
ance is a good idea for

an uncertain robot Tjjl J?ﬁ

= Cons: unnatural at-
) _IJ:ID{—iDDf l.j_l
traction to open space, > ) E—‘%
suboptimal paths E

= Needs extensions



Method #3: Exact Cell Decomposition

= Idea: decompose C,  into non-overlapping

ree

cells, construct connectivity graph to
represent adjacencies, then search

= A popular implementation of this idea:

1. Decompose C;,, into trapezoids with vertical
side segments by shooting rays upward and
downward from each polygon vertex

2. Place one vertex in the interior of every
trapezoid, pick e.g. the centroid

3. Place one vertex in every vertical segment
4. Connect the vertices



Method #3: Exact Cell Decomposition

= Trapezoidal decomposition (C = R> max)

= Best known algorithm: O log n) where n is
the number of vertices of C .



Question

Do you need the vertices at the center of the trapezoids? Why/Why not?



Method #4: Uniform Approximate Cell
Decomposition

17

17
17 |16
17 |16
17 |16
17 |16

16

e L o e e o =

o

17 |16

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uniform cell shape: e.g. wavefront planner



Method #5: Quadtrees

Q.

Non-Uniform cell shape: e.g. quadtree decomposition



Method #5: Quadtrees

define G = Decompose(G,resolution): Collision-check: check whether

1. if G null:

create coarse grid
collision-check G

. for all occupied cells c in G:

delete c from G

subdivide c into four cells (sub)
add sub into G :
collision-check sub TH me

each cell is completely free or not
—
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define FindPath(maxresolution): . » -
1. for resolution = coarse to maxresolution: < (cmu T
2. G = Decompose(G,resolution) L
3 if Check-for-path(G) == True: : ' '
4. Success! qr

Why do you think this method is called “quadtree”?



Method #5: Octomaps

8 —>

EMPTY cell

MIXED cell . FULL cell

Same as quadtrees, but in three dimensions...



Examples of solutions found using octomaps




Exact vs approximate cell decomposition

= Exact decomposition methods can be invol-
ved and inefficient for complex problems

= Approximate decomposition uses cells with
the same simple predefined shape

= Pros:
= Iterating the same simple computations
= Numerically more stable

= Simpler to implement
= Can be made complete



Method #6: Potential Functions

= All techniques discussed so far aim at cap-
turing the connectivity of C,_ into a graph

ree

= Potential Field methods follow a
different idea:

The robot, represented as a point in C, is
modeled as a particle under the influence
of a artificial potential field U

U superimposes

= Repulsive forces from obstacles
= Attractive force from goal



Method #6: Potential Functions

J Attractive
Repulsive L - 7 ® field from
= =

field from |
olbstacles r—s/ l \ / [ e
}

Y \

« Stay away from obstacles: Imagine that the
obstacles are made of a material that generate a
repulsive field

 Move closer to the goal: Imagine that the goal

location is a particle that generates an attractive
field



Method #6: Potential Functions

Attractive Field

Move towarad
lowest potential
Steepest descent
(Best first search)
on potential field

Combined Field




Method #6: Potential Functions

1
- dz’st(q , qObstacles)2

Us(q)

Ug(q) = dist(q, qgoar)’

After computing U, follow the negative gradient: ) q = —\VU (q)



Potential Function Limitations

Potential field Zoomed in view

Can you spot
the problem?

« Completeness?
* Problems in higher dimensions



Potential Function Limitations

x qgoal

Local minimum
of potential

» Potential fields in general exhibit local minima




Applications to manipulators

Compute potential function in Cartesian space: oxr = —VU(:B)

Project into joint space: 5(] — —J ffVU(aj)

&

Compute goal velocities at different points on the arm:

Sq = —J% ,VU(z) — JF VU,(x) — J VU, (x)

G %
\/ Xd
Pull eff toward goal and /
away from obstacles

X)
Push x1 and x2 away
from obstacles
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Applications to manipulators

Can you draw a bug-trap-like scenario where this approach won'’t work?

Xq

4




	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

