
Classical Path Planning

Robert Platt
Northeastern University

Slides contain significant material from Uni Freiburg course
Original slide author: Kai Arras

Problem we want to solve

Given:
– a point-robot (robot is a point in space)
– description of obstacle space and free space
– a start configuration and goal region

Find:
– a collision-free path from start to goal

workspace configuration space

Problem we want to solve

Given:
– configuration space
– free space
– start state
– goal region

Find:
– a collision-free path , such that and

workspace configuration space

Problem we want to solve

Method #1: Visibility Graphs

n = num of obstacle vertices

Question

Can you think of an n^3 algorithm to compute the visibility graph?

Method #2: Generalized Voronoi Diagram

Method #2: Generalized Voronoi Diagram

Question

How many regions in a voronoi diagram with n objects?

Method #2: Generalized Voronoi Diagram

Method #3: Exact Cell Decomposition

Method #3: Exact Cell Decomposition

Question

Do you need the vertices at the center of the trapezoids? Why/Why not?

Method #4: Uniform Approximate Cell
Decomposition

c

Uniform cell shape: e.g. wavefront planner

Method #5: Quadtrees

Non-Uniform cell shape: e.g. quadtree decomposition

Method #5: Quadtrees

define G = Decompose(G,resolution):
1. if G null:
2. create coarse grid
3. collision-check G
4. for all occupied cells c in G:
5. delete c from G
6. subdivide c into four cells (sub)
7. add sub into G
8. collision-check sub

define FindPath(maxresolution):
1. for resolution = coarse to maxresolution:
2. G = Decompose(G,resolution)
3. if Check-for-path(G) == True:
4. Success!

Collision-check: check whether

each cell is completely free or not

Why do you think this method is called “quadtree”?

Method #5: Octomaps

Same as quadtrees, but in three dimensions...

Examples of solutions found using octomaps

Exact vs approximate cell decomposition

Method #6: Potential Functions

Method #6: Potential Functions

Method #6: Potential Functions

Method #6: Potential Functions

After computing U, follow the negative gradient:

Potential Function Limitations

Potential Function Limitations

Applications to manipulators

Compute potential function in Cartesian space:

Project into joint space:

Compute goal velocities at different points on the arm:

0 z

x1

x2

obstacle

xd

Pull eff toward goal and

away from obstacles

Push x1 and x2 away

from obstacles

Applications to manipulators

z0

1x

2x

obstacle

dx

Can you draw a bug-trap-like scenario where this approach won’t work?

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

