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Calculate:
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U that minimizes J(X,U)

Important problem!

How do we solve it?
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Substitute X into J:

Minimize by setting dJ/dU=0:

Solve for U:

One solution: least squares



Solve for optimal trajectory:

What can this do?

Start here

End here at time=T

Image: van den Berg, 2015



This is cool, but...
– only works for finite horizon problems
– doesn't account for noise
– requires you to invert a big matrix

What can this do?



Bellman solution
Cost-to-go function: V(x)

– the cost that we have yet to experience if we travel along the minimum 
cost path.

– given the cost-to-go function, you can calculate the optimal path/policy

The number in each cell 
describes the number of 
steps “to-go” before 
reaching the goal state

Example:



Bellman optimality principle:

Bellman solution

Cost of this time step

(Cost of future time steps)
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Bellman optimality principle:

Bellman solution

Cost-to-go from 
state x at time t

Cost-to-go from state 
(Ax+Bu) at time t+1

Cost incurred on 
this time step

Cost incurred after 
this time step
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For the sake of argument, suppose 
that the cost-to-go is always a 
quadratic function like this:
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Bellman solution

For the sake of argument, suppose 
that the cost-to-go is always a 
quadratic function like this:

where:

Then:

How do we minimize this term?
– take derivative and set it to zero.
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Bellman solution

How do we minimize this term?
– take derivative and set it to zero.

optimal control as a function of state
– but: it depends on P_{t+1}...

How solve for P_{t+1}???
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Substitute u into V_t(x):
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Bellman solution
Substitute u into V_t(x):

Dynamic Riccati Equation



Example: planar double integrator

Air hockey table

m=1

b=0.1

u=applied force

Initial position 
of the puck Initial velocity

Goal position

Build the LQR controller for:

Initial state:

Time horizon:

Cost fn:



Example: planar double integrator

Air hockey table

Step 1:
Calculate P backward from T: P_100, P_99, P_98, … , P_1

HOW?
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Example: planar double integrator

Air hockey table

Step 1:
Calculate P backward from T: P_100, P_99, P_98, … , P_1

...
...



Example: planar double integrator

Air hockey table

Step 2:
Calculate u starting at t=1 and going forward to t=T-1

...
...



Example: planar double integrator

origin

0 0.20
0

1

0.2



Example: planar double integrator

u_x, u_y

t



Example: planar double integrator
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Example: planar double integrator

origin

00



The infinite horizon case

So far: we have optimized cost over a fixed horizon, T.
– optimal if you only have T time steps to do the job

But, what if time doesn't end in T steps?

One idea:
– at each time step, assume that you always have T
   more time steps to go
– this is called a receding horizon controller



The infinite horizon case

Time step
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Notice that elt's of P stop changing (much) more than 
20 or 30 time steps prior to horizon.

– what does this imply about the infinite horizon case?
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Notice that elt's of P stop changing (much) more than 
20 or 30 time steps prior to horizon.

– what does this imply about the infinite horizon case?

Converging toward fixed P



The infinite horizon case

We can solve for the infinite horizon P exactly:

Discrete Time Algebraic Riccati Equation



Given:

System:

Cost function:

where:

Calculate:

Initial state:

U that minimizes J(X,U)

So, what are we optimizing for now?



Controllability

A system is controllable if it is possible to reach any goal state from any 
other start state in a finite period of time.

When is a linear system controllable?

It's property of the 
system dynamics...



Controllability

A system is controllable if it is possible to reach any goal state from any 
other start state in a finite period of time.

When is a linear system controllable?

Remember this?



Controllability

What property must 
this matrix have?



Controllability

This submatrix must be full rank.

– i.e. the rank must equal the 
dimension of the state space
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