Homogeneous Transforms

Robert Platt Northeastern University

Why do we care about kinematics?

Joint encoders tell us head angle

Visual perception tells us object position and orientation (pose)

KIT Humanoid

Need to know where hand is...

Need to tell the hand where to move!

Homogeneous transforms

Homogeneous transform

$$^{A}p=^{A}R_{B}^{B}p+^{A}d_{B}$$

Homogeneous transform

$$= \begin{pmatrix} {}^{A}R_{B} & {}^{B}p + {}^{A}d_{B} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} {}^{B}p \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} {}^{A}R_{B} & {}^{A}d_{B} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} {}^{B}p \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} {}^{C}n_{11} & {}^{C}n_{12} & {}^{C}n_{13} & {}^{A}d_{x} \\ {}^{C}n_{21} & {}^{C}n_{22} & {}^{C}n_{23} & {}^{A}d_{y} \\ {}^{C}n_{31} & {}^{C}n_{32} & {}^{C}n_{33} & {}^{A}d_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} {}^{B}p \\ 1 \end{pmatrix} = {}^{A}T_{B} \begin{pmatrix} {}^{B}p \\ 1 \end{pmatrix}$$
always one always zeros

Example 1: homogeneous transforms

Example 1: homogeneous transforms

What's ${}^BT_{\scriptscriptstyle A}$?

$${}^{A}R_{B} = \begin{vmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\begin{array}{c}
 & A \\
 & Y \\
 & B \\
 & \Theta \\
 & A \\$$

$${}^{B}d_{A} = \begin{pmatrix} -l \\ 0 \\ 0 \end{pmatrix}$$

$${}^{B}d_{A} = \begin{pmatrix} -l \\ 0 \\ 0 \end{pmatrix} \qquad {}^{B}T_{A} = \begin{pmatrix} {}^{B}R_{A} & {}^{B}d_{A} \\ 0 & 1 \end{pmatrix}$$

$${}^{B}T_{A} = \begin{vmatrix} \cos(\theta) & \sin(\theta) & 0 & -l \\ -\sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Think-pair-share

This arm rotates about the \mathbf{Z}_a axis.

Calculate: aT_b

Example 3: homogeneous transforms

$${}^{a}R_{c} = {}^{a}R_{b}{}^{b}R_{c} = \begin{vmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{vmatrix} \begin{vmatrix} c_{\varphi} & -s_{\varphi} & 0 \\ s_{\varphi} & c_{\varphi} & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} c_{\theta}c_{\varphi} & -s_{\varphi}c_{\theta} & s_{\theta} \\ s_{\varphi} & c_{\varphi} & 0 \\ -s_{\theta}c_{\varphi} & s_{\theta}s_{\varphi} & c_{\theta} \end{vmatrix}$$

Outline the procedure for calculating $\,^AT_C\,$ and $\,^CT_A\,$

Forward Kinematics

• Where is the end effector w.r.t. the "base" frame?

Composition of homogeneous transforms

Forward kinematics: composition of homogeneous transforms

$${}^{0}T_{3} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3}$$

$${}^{0}T_{1} = \begin{vmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$${}^{1}T_{2} = \begin{vmatrix} c_{2} & -s_{2} & 0 & l_{2}c_{2} \\ s_{2} & c_{2} & 0 & l_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Forward kinematics: composition of homogeneous transforms

$${}^{0}T_{3} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3}$$

$${}^{2}T_{3} = \begin{vmatrix} c_{3} & -s_{3} & 0 & l_{3}c_{3} \\ s_{3} & c_{3} & 0 & l_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Remember those double-angle formulas...

$$\sin(\theta \pm \phi) = \sin(\theta)\cos(\phi) \pm \cos(\theta)\sin(\phi)$$

$$\cos(\theta \pm \phi) = \cos(\theta)\cos(\phi) \mp \sin(\theta)\sin(\phi)$$

Forward kinematics: composition of homogeneous transforms

$${}^{0}T_{3} = {}^{0}T_{1}^{1}T_{2}^{2}T_{3}$$

$${}^{0}T_{3} = \begin{vmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} c_{2} & -s_{2} & 0 & l_{2}c_{2} \\ s_{2} & c_{2} & 0 & l_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} c_{3} & -s_{3} & 0 & l_{3}c_{3} \\ s_{3} & c_{3} & 0 & l_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$${}^{0}T_{3} = \begin{vmatrix} c_{123} & -s_{123} & 0 & l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123} \\ s_{123} & c_{123} & 0 & l_{1}s_{1} + l_{2}s_{12} + l_{3}s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Think-pair-share

Calculate 2T_0