My head
IS spinning...

Representing Orientation

Robert Platt
Northeastern University



The space of rotations

50(3) = Re R*® | RR" =I,det(R) =+1

\

Special orthogonal group(3):

why det(R) ==l

Rotations preserve distance: HRpl B sz” :HP1 B sz

Rotations preserve orientation: (Rp1) X(sz) :R(p1 ><p2)



The space of rotations

50(3) = Re R*® | RR" =I,det(R) =+1

\

Special orthogonal group(3):
Why it’s a group:
* Closed under multiplication: if Rp R2 [ 5()(3)then R1R2 [ 50(3)
* Hasanidentty: 3y e SO(3)s.t. IR, =R,

* Has a unique inverse...

 |s associative...

Why orthogonal:

* vectors in matrix are orthogonal
Why it's special: det(R) =+1,NOT det(R) ==

A

Right hand coordinate system



Possible rotation representations

You need at least three numbers to represent an
arbitrary rotation in SO(3) (Euler theorem). Some
three-number representations:

* ZYZ Euler angles

* ZYX Euler angles (roll, pitch, yaw)
* Axis angle

One four-number representation:

* Quaternions



ZYZ Euler Angles

)
rzyz =| 0
cosg —sing 0
fogetiromAto 5 /> RZ((P): sinp cosg 0
1. Rotate ¢ about z axis 0 0 1
2. Then rotate @ about y axis cosf 0 sinf
\

>R,(8)=[ 0 1 0

—sinf 0 cosf
\ cosy —siny 0

ARZ(I,U)Z sinyy cosyy 0
0 0 1

3. Then rotate ¥ about z axis



ZYZ Euler Angles

Remember that R, (¢) R, (6) R,(y)encode the desired rotation in the pre-

rotation reference frame

RZ ( ¢) —pre- rotation R

post- rotation

Therefore, the sequence of rotations is concatentated as follows:

R,,(¢,0,) =R (¢)R,(O)R,¥)

cos¢p —sing 0}[cosh
Rzyz(go,(),lp): sing cosp  Of 0

0 0 1]{—sin
CyCyCy—S,Sy
Rzyz(<p,9,l/l) S cecw CySy

0 sinf |[cosy
1 0 ||siny
0 0 cosf/| O

- +
) cgsw C,Cy

395y

—siny 0
cosyy 0
0 1
CySp
S, S6
Co




ZY X Euler Angles (roll, pitch, yaw)

cosgp —sing 0
To get from A to B: > R (¢)=[sing cosg 0
1. Rotate gabout z axis — 0 0 1
2. Then rotate @ about y axis cosd 0 sind
. >R (0)=] 0 1 0
3. Then rotate ¥ about x axis y .
—sinf 0 cos6
\ 1 0 0
= RX(L/I)= 0 cosyy —siny
0 siny cosy

R, (¢,0,5) =R, ($)R,(O)R, ()

coso —sing 0}/cos@ 0 sinf{f1 0 0
Rzyz(fp,H,w)Z sinp cosop 0| 0 1 0 |{0 cosy —siny
0 0 1/|—sinf 0 cos@||0 siny cosy




Think-pair-share: problems w/ Euler angles

How far apart are these two orientations, actually?

T ON

0 90
r,=|90 r,=|89
0 90°

So ... differences between Euler angles may
not reflect actual distances in orientation




Think-pair-share: problems w/ Euler angles

How far apart are these two orientations, actually?

T ON

0 90
r,=90° r,=|89
0 90

So ... differences between Euler angles may
not reflect actual distances in orientation

An extreme case of this problem is known as
“gimbal lock”.
— Euler system loses a degree of freedom
— any Euler angle representation can suffer
from this




Problem w/ Euler Angles: gimbal lock

TORQUE MOTOR

DUPLEX BALL-BEARING +>l<ﬂx|s
SLIPRING (50-CONTACT)
OG AXIS
GYRO ERROR RESOLVER (1X)
DUPLEX BALL-BEARING TORQUE MOTOR
SLIPRING (40-CONTACT) soll:::f:lcem%fmams
MULTISPEED RESOLVER _ (40-CONTACT)

(1X AND 16X)

LM
OUTER + z-AxiS
GIMBAL
MG AXIS
MIDDLE
GIMBAL STABLE
MEMBER
IG AXIS
LM
IMU CASE
(CUTAWAY) 4+ v-Axis
TORQUE MOTOR
DUPLEX BALL-BEARING
SLIPRING (40-CONTACT)
DUPLEX BALL-BEARING DUPLEX BALL-BEARING
SLIPRING (40-CONTACT) SLIPRING (50-CONTACT)
MULTISPEED RESOLVER (1X AND 16X) MULTISPEED RESOLVER (1X AND 16X)

Figure 2.1-24, IMU Gimbal Assembly

Note:

Xg== X |RIG; Xa ==X PIP
Yg=Y IRIG; Ya==Y PIP
Zg==ZIRIG; Za==Z PIP

300LM4-152



Question

Does this solve the problem?



AXis-angle representation

Theorem: (Euler). Any orientation, R € so(3) , IS equivalent to a rotation
about a fixed axis, @& R?, through an angle g [0,277)

(also called exponential coordinates)

Axis:  k=|k Angle: ()

Converting to a rotation matrix:

R, =5’ =J +S(k)sin(6) + S(k)*(1- cos(6))

/;[that equation in the book...]

Rodrigues’ formula



AXis-angle representation

Converting to axis angle:

Magnitude of rotation:

AXxis of rotation:

Where:

and:

_i[trace(R)—1

0 =|k|=cos
2
F3p—T>)3
IA<— 1

=— r..—r
2sin@| 13 31
Fy1 7T
vy Ty T3
R=|r, ry 1y
Fi3 Ty T3

trace(R) =r,, +r1,, + 1,



AXis-angle representation

Axis angle is can be encoded by just three numbers instead of four:

k

f k #0 then A:_
K

If the three-number version of axis angle is used, then

R, =I

and @ :‘k‘

For most orientations, Rk , IS unique.

For rotations of 180, there are two equivalent representations:

If‘k‘ =180then R, =R,



Axis-angle problems

Still suffers from the “edge” and distance preserving problems of Euler
angles:

0
0 0 r.—r,=| 0
r=0 r,=| 0 358°
179° -179°

. but the actual distance is ?°

<—— Distance metric changes as you
get further from origin.
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Example: differencing rotations

T
Calculate the difference between A
these two rotations: ki=| 0 k,
0
Tt
A
This is NOT the right answer: k,—k,=|— 77
2
0
According to that, this is the ‘k1 ) kz‘ _T —127.27°

J2

magnitude of the difference:




Question

n 0
Calculate the difference between A 0
these two rotations: ki=lo k,= A
0 0
Tt
/s
This is NOT the right answer: k,—k,=|— 77
2
0
According to that, this is the ‘k1 . kz‘ T —127.27°

J2

magnitude of the difference:

What is the real angular difference between these two orientations?



Quaternions

So far, rotation matrices seem to be the most reliable method of manipulating
rotations. But there are problems:

* Qver along series of computations, numerical errors can cause these 3x3
matrices to no longer be orthogonal (you need to “orthogonalize” them from

time to time).

* Although you can accurately calculate rotation differences, you can'’t
Interpolate over a difference.’

* Suppose you wanted to smoothly rotate from one orientation to another —
how would you do it?

Answer: quaternions...



Quaternions

Generalization of complex numbers: Q =q, +iq, + jq, +kq,

. Q =(q,,q)
Essentially a 4-dimensional quantity
Properties of complex  iI = Jj =kk =ijk =-1 jk =-kj =i
dimensions: .. .. : : :
ij =- ji =k ki =-ik =]
Multiplication: QP :(qO +iq, + jq, + kqg)(po +ip, + jp, + kp3)
QP :(po% - pPqpqrq,ptp Xq)

Complex conjugate: Q* :(qo,q)* Z(qo,- q)



Quaternions

Invented by Hamilton in 1843:

Along the royal canal in Dublin...

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discover
the fundamental formul:
quaternion multiplicat

i’=j’= R~ ijh= -1 S
& cut it onastone of'this bridge

E = i



Quaternions

Let’s consider the set of unit
quaternions: Q° :q02 + q12 + q22 + q32 —1
/
This is a four-dimensional hypersphere, i.e. the 3-sphere S?

The identity quaternionis:  Q 2(1,0)

snce:  QQ" =gy, 9)q,,- @) =\q,q, - 7%, 9q- 9.q+q%q) =(1,0)

Therefore, the inverse of a unit quaternion is: Q* =Q !



Question

Associate a rotation with a unit quaternion as follows:

e

Given a unit axis, k , and an angle, O < (just like axis angle)

0 0

The associated quaternion is: le p— | COS ,ksin

Therefore, () represents the same rotationas - ()



Question

Associate a rotation with a unit quaternion as follows:

e

Given a unit axis, k , and an angle, O < (just like axis angle)
. o 6\ .. (6O
The associated quaternion is: QA =|cos|—|.ksin|—
k,0 ) ),

Therefore, () represents the same rotationas - ()

Why? :'




Quaternions

Associate a rotation with a unit quaternion as follows:

e

Given a unit axis, k , and an angle, O < (just like axis angle)

0 0

The associated quaternion is: le p— | COS ,ksin

Therefore, () represents the same rotationas - ()

Let 'p I(O,ip) be the quaternion associated with the vector ' p
a . bp — a -

You can rotate " P from frame atob: P _Qba PQba

Composition: Q.. =Q_,Q,.

-1
Inversion: ch :QcaQba



Example: Quaternions

1
0
0

0,

Rotate a P

Q°PQ'=

bP:

!
o O _
O’
||
—| — |
<
+
— | N
O’




Example: Quaternions

Vi
Find the difference between these two axis angle A
rotations: ki=|0
0
0 1
inlL| = nl—_1 1 (L |2
S1I (Z)—COS(Z)—E ch 2 2 Qba_ TZ’ 0
0 0

QP=(pyqy=P-q,Poq+qoP+pXq

0 _ 1
. ! 1 1 V2
QCb_QcaQba_l_ J2° 2 J27 0
0 0

_ 1 1

V2 2

—|xr 1 L — |1 1

2242 V2 2] 2

_ 1 _ 1

V2 2




Quaternions: Interpolation

Suppose you're given two rotations, R1 and R2

How do you calculate intermediate rotations?

_ _ This does not even result in a rotation
R =aR, +(1- )R, «—— s doe:

Do quaternions help?

aQ, + (1- Oc)Q2 Suprisingly, this actually works
| ‘an +(1- O{)QZ‘ * Finds a geodesic

This method normalizes automatically (SLERP):

Q, sin(1- a)Q + Q, sin a2
sin €2

Q =
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