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My head 

is spinning...



The space of rotations

Special orthogonal group(3):

   1)det(,|3 33   RIRRRRSO T

Rotations preserve distance: 2121 ppRpRp 

Rotations preserve orientation:      2121 ppRRpRp 

Why                                ? 1)det( R



The space of rotations

Special orthogonal group(3):

   1)det(,|3 33   RIRRRRSO T

Why it’s a group:

• Closed under multiplication: if                              then 

• Has an identity:

• Has a unique inverse…

• Is associative…

 321 SORR  3, 21 SORR 
  11 s.t. 3 RIRSOI 

Why orthogonal:

• vectors in matrix are orthogonal

Why it’s special:                           , NOT1)det( R 1)det( R

Right hand coordinate system



Possible rotation representations

You need at least three numbers to represent an 
arbitrary rotation in SO(3) (Euler theorem). Some 
three-number representations:

• ZYZ Euler angles 

• ZYX Euler angles (roll, pitch, yaw)

• Axis angle

One four-number representation:

• quaternions



To get from A to B:

1. Rotate    about z axis

2. Then rotate    about y axis

3. Then rotate    about z axis

ZYZ Euler Angles

r zyz=(φθψ )
R z (φ)=(cos φ −sin φ 0

sin φ cos φ 0
0 0 1 )

R y(θ )=(cosθ 0 sin θ
0 1 0

−sin θ 0 cosθ )





R z (ψ )=(cosψ −sinψ 0
sinψ cosψ 0

0 0 1 )



  )()()(,,  zyzzyz RRRR 

Therefore, the sequence of rotations is concatentated as follows:

ZYZ Euler Angles

R zyz (φ ,θ ,ψ )=(cos φ −sin φ 0
sinφ cosφ 0

0 0 1 )(
cosθ 0 sin θ

0 1 0
−sin θ 0 cosθ )(

cosψ −sin ψ 0
sin ψ cosψ 0

0 0 1 )

Remember that                                     encode the desired rotation in the pre-
rotation reference frame:

)(zR )(yR )(zR

rotationpost
rotationpre

z RR 
)(

R zyz (φ ,θ ,ψ )=(cφcθcψ−sφ sψ −cφcθ sψ−sφcψ cφ sθ

sφcθcψ+cφ sψ −sφcθsψ+cφcψ sφ sθ

−sθ cψ sθsψ cθ
)



R z (φ)=(cos φ −sinφ 0
sin φ cos φ 0

0 0 1 )
R y(θ )=(cosθ 0 sin θ

0 1 0
−sin θ 0 cosθ )

Rx(ψ )=(1 0 0
0 cosψ −sinψ
0 sinψ cosψ )


To get from A to B:

1. Rotate    about z axis

2. Then rotate    about y axis

3. Then rotate    about x axis




  )()()(,,  xyzzyx RRRR 

ZYX Euler Angles (roll, pitch, yaw)

R zyz (φ ,θ ,ψ )=(cos φ −sin φ 0
sinφ cosφ 0

0 0 1 )(
cosθ 0 sin θ

0 1 0
−sin θ 0 cosθ )(

1 0 0
0 cos ψ −sin ψ
0 sinψ cosψ )



Think-pair-share: problems w/ Euler angles

r1=( 0
90∘

0 ) r2=(90∘

89∘

90∘)
How far apart are these two orientations, actually?

So … differences between Euler angles may 
not reflect actual distances in orientation



Think-pair-share: problems w/ Euler angles

r1=( 0
90∘

0 ) r2=(90∘

89∘

90∘)
How far apart are these two orientations, actually?

So … differences between Euler angles may 
not reflect actual distances in orientation

An extreme case of this problem is known as 
“gimbal lock”.

– Euler system loses a degree of freedom
– any Euler angle representation can suffer 

from this



Problem w/ Euler Angles: gimbal lock



Question

Does this solve the problem?



Axis-angle representation

Theorem: (Euler). Any orientation,                   , is equivalent to a rotation 
about a fixed axis,               , through an angle 

k=(k x

k y

k z
)

 3SOR
3R )2,0[  

Axis: Angle:

          
 cos1sin 2  kkk

k SSIeR S

(also called exponential coordinates)

 book... in theequation that 

Rodrigues’ formula

Converting to a rotation matrix:



Axis-angle representation

θ=|k|=cos−1 ( trace (R )−1
2 )

R=(r11 r12 r13

r12 r22 r23

r13 r23 r33
)

Magnitude of rotation:

332211)( rrrRtrace 

Where:

k̂= 1
2sin θ (r32−r23

r13−r31

r21−r12
)Axis of rotation:

and:

Converting to axis angle:



Axis-angle representation

Axis angle is can be encoded by just three numbers instead of four:

k̂=
k
|k|

kIf                  then0k and

For most orientations,        , is unique.
kR

If the three-number version of axis angle is used, then

IR 0

For rotations of          , there are two equivalent representations:∘180

kk RR If                   then
∘180k



Axis-angle problems

Still suffers from the “edge” and distance preserving problems of Euler 
angles:

r1=( 0
0

179∘) r2=( 0
0

−179∘)
r1−r2=( 0

0
358∘)

, but the actual distance is ∘2

Distance metric changes as you 
get further from origin.



Projection distortions



Example: differencing rotations

k1=(
π

2

0
0
)Calculate the difference between 

these two rotations: k2=( 0
π

2

0
)

k1−k2=(
π

2
−π

2

0
)This is NOT the right answer:

∘27.127
2

21 


kkAccording to that, this is the 
magnitude of the difference:



Question

k1=(
π

2

0
0
)Calculate the difference between 

these two rotations: k2=( 0
π

2

0
)

k1−k2=(
π

2
−π

2

0
)This is NOT the right answer:

∘27.127
2

21 


kkAccording to that, this is the 
magnitude of the difference:

What is the real angular difference between these two orientations?



So far, rotation matrices seem to be the most reliable method of manipulating 
rotations. But there are problems:

• Over a long series of computations, numerical errors can cause these 3x3 
matrices to no longer be orthogonal (you need to “orthogonalize” them from 
time to time).

• Although you can accurately calculate rotation differences, you can’t 
interpolate over a difference.’

• Suppose you wanted to smoothly rotate from one orientation to another – 
how would you do it?

Quaternions

Answer: quaternions…



Quaternions

3210 kqjqiqqQ Generalization of complex numbers:

 qqQ ,0

   qqqqQ  ,, 0
*

0
*

Essentially a 4-dimensional quantity

  32103210 kpjpippkqjqiqqQP Multiplication:

 qppqqpqpqpQP  0000 ,

Complex conjugate:

1 ijkkkjjii

kjiij 

ikjjk 

jikki 

Properties of complex 
dimensions:



Quaternions

Invented by Hamilton in 1843:

Along the royal canal  in Dublin…



Quaternions

12
3

2
2

2
1

2
0

2  qqqqQ
Let’s consider the set of unit 

quaternions:

This is a four-dimensional hypersphere, i.e. the 3-sphere 3S

Therefore, the inverse of a unit quaternion is: 1* QQ

     )0,1(,,, 00
2

0000
*  qqqqqqqqqqqqqQQ

The identity quaternion is:  0,1Q

Since:



Question

Given a unit axis,     , and an angle,     : 

Associate a rotation with a unit quaternion as follows:

k̂  (just like axis angle)

Q
k̂ ,θ
=(cos (θ2 ) , k̂ sin (θ2 ))The associated quaternion is:

Therefore,       represents the same rotation asQ Q



Question

Given a unit axis,     , and an angle,     : 

Associate a rotation with a unit quaternion as follows:

k̂  (just like axis angle)

Q
k̂ ,θ
=(cos (θ2 ) , k̂ sin (θ2 ))The associated quaternion is:

Therefore,       represents the same rotation asQ Q

Why?



You can rotate        from frame a to b:

Quaternions

Pa *
ba

a
ba

b PQQP 

Given a unit axis,     , and an angle,     : 

Associate a rotation with a unit quaternion as follows:

k̂  (just like axis angle)

Q
k̂ ,θ
=(cos (θ2 ) , k̂ sin (θ2 ))The associated quaternion is:

Therefore,       represents the same rotation asQ Q

Let                       be the quaternion associated with the vector         pP ii ,0 pi

bacbca QQQ Composition:

1 bacacb QQQInversion:



Rotate                           by  

Example: Quaternions

Q=( 1

√2
,( 0

1

√2

0
))a P=(0,(100))

b P=Q a PQ¿=( 1

√2
,( 0

1

√2

0
))(0,(100))( 1

√2
,( 0
− 1

√2

0
))

=( 1

√2
,( 0

1

√2

0
))(0,(

1

√2

0

− 1

√2
))

=(0,(
1
2

0
− 1

2
)+(−

1
2

0
− 1

2
))=(0,( 0

0
−1))



k1=(
π

2

0
0
)Find the difference between these two axis angle 

rotations: k2=( 0
π

2

0
)

Example: Quaternions

Qcb=( 1

√2
,( 0

1

√2

0
)) Qba=( 1

√2
,(

1

√2

0
0
))sin ( π4 )=cos ( π4 )= 1

√2

Qcb=QcaQba−1=( 1

√2
,( 0

1

√2

0
))( 1

√2
,(−

1

√2

0
0
))

QP=( p0q0−p⋅q , p0q+q0 p+p×q )

=( 1
2
, 1

√2 (
− 1

√2
1

√2

− 1

√2
))=(1

2
,(−

1
2

1
2

− 1
2
))

θcb=cos−1 ( 1
2 )= 2

3
π

k cb=(−
1

√3
1

√3

− 1

√3
)



Quaternions: Interpolation

Suppose you’re given two rotations,       and

How do you calculate intermediate rotations?
1R 2R

  21 1 RRRi   This does not even result in a rotation 
matrix

Do quaternions help?

 
  21

21

1

1

QQ

QQ
Qi 






Suprisingly, this actually works

• Finds a geodesic

This method normalizes automatically (SLERP):

 





sin

sin1sin 21  QQ
Qi
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