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Differential Kinematics

Up to this point, we have only considered the
relationship of the joint angles to the
Cartesian location of the end effector:

f(q) =x

L

But what about the first derivative? af (q)

oq

* This would tell us the velocity of the end
effector as a function of joint angle
velocities.

-...>



Motivating Example

Consider a one-link arm

 As the arm rotates, the end effector
sweeps out an arc

* Let's assume that we are only
Interested in the X coordinate...

Forward kinematics: x =I cos(q)

Differential kinematics: Z—Z =-Isin(q)

ox =-1sin(q)og

.1
= [sin(q) X



Motivating Example

Suppose you want to move the end Goal: move the end
effector above a specified point, X, effector onto this line
1 (%g \I
Answer #1: (g = COS T JERCUIR I
o RO |
X [%
1~
. . :'" I
Answer #2: 1. 1 =0,q, =arbitrary . - |
2. X =lcos(q;) |
Xg
3. OX Za(xg - xl.)
1
4. 5q =—— Sx
B ISln(qz')
5. 9ia —4; +5q

6. 1 *+ goto 2.



Motivating Example
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This controller moves the link asymptotically toward the goal

position.



Intro to the Jacobian

.Ilcos(q1)+lz Cos(q1+q2)- Forward kinematics of the two-
link manipulator

| llsin(q1)+lzsin(q1+q2)_

Velocity Jacobian

|

dr [ —=lisin(q1) — l2sin(q1 + ¢2)
dq [1 cos(q1) + l2 cos(q1 + ¢2)

=Jlq



J(q) = < —l1sin(q1) — lasin(q1 + g2)

Intro to the Jacobian

l1cos(q1) + I cos(q1 + ¢2)

Chain rule: ox =Jdg

If the Jacobian is square
and full rank, then we

caninvertit. 0g =J 'ox

~”13cl—>G)—>53'j o

L

FK(q)

f

q

q

0q $ qd \jointctlr

joint position
sensor

—lasin(q1 + ¢2)
—ly cos(q1 + ¢2)

)




Jacobian

The Jacobian relates joint velocities with end effector twist:

& :qu\
/ Joint angle velocities
End effector twist

| * First derivative of joint angles:

Jacobian
! qd1

q=
dn

It turns out that you can “easily” compute the Jacobian for arbitrary
manipulator structures

* This makes differential kinematics a much easier sub-problem than
kinematics in general.



What is Twist?

End effector twist: . .
Linear velocity

* Twistis a concatenation of linear 1 —
velocity and angular velocity: — > & =
W .
Angular velocity

* As we will show in a minute, linear
and angular velocity have different
units



What is Twist?

End effector twist: . .
Linear velocity

* Twistis a concatenation of linear 1 —
velocity and angular velocity: — > & =
W .
Angular velocity

* As we will show in a minute, linear
and angular velocity have different
units

What is angular velocity?

Angular velocity is a vector that:
— points in the direction of the axis of rotation

— has magnitude equal to the velocity of rotation



What is Angular Velocity?

Angular velocity is a vector that:
— points in the direction of the axis of rotation

— has magnitude equal to the velocity of rotation

Symbol for angular velocity: W

A

W
Relation between angular <
velocity and linear velocity: U = W X T L

We will often write it this way: q = w X @




Angular Velocity Derivation

(= a q
bq R aq < Just differentiate all elements of
a the rotation matrix w.r.t. time.
b _bp b b
(= Ra Ra q
: . This is the matrix representation
S(ba)):bRa bRa of angular velocity
/—H

b: __ (b )b <«——— TIhis FO differential equation
q =5S\"w q encodes how the particle rotates



Twist: Time out for skew symmetry!

T b}
S =-5 <«—— Def'n of skew symmetry
0 a b | |
S=|_ 0 «— Skew symmetric matrices
—|d ¢ always look like this
-b —c 0
0 —-x, x,
If you interpret the skew symmetric S(X): X, 0 —X,
matrix like this:
-x, X, 0

Then this is another way of writing
the cross product:




Angular Velocity Derivation

Skew symmetry of S(be) -
IZR "R’
O:b}; bRa THR PRT
S(ba)) =- S(ba))T
°q ZS(ba))bq

b _b <«—— You probably already know this
q-— C{)%q formula



Twist

Twist concatenates linear and angular velocity:

Linear velocity

1

@ — Angular velocity



Jacobian

Breakdown of the Jacobian: V =J

w=J_ q
ih
$=| V149
-Jw-
/ —s\
_OX 10F 5\
Relation to the derivative: J, =— but J_ # I
8C[ \oq,
N -

That’s not an angular velocity



Calculating the Jacobian

Approach: effy «”
e (Calculate the Jacobian one column at a
time eff -1,

* Each column describes the motion at the
end effector due to the motion of that joint
only.

* For each joint, /, pretend all the other joints
are frozen, and calculate the motion at the
end effector caused by /.




Calculating the Jacobian: Velocity

The velocity of the end effector "x .
caused by motion at the /-1 link: ~ - y

peff ll%plleff plll : ‘I i

~ —— y

AN

Velocity at end effector due
to change in length of
link i-1

Velocity at end effector due to rotation
at joint /-1



Calculating the Jacobian: Velocity
Rotational DOF

L i-lX
- «
Y e
* Rotates about -1, N -
_b _____ S
- Zi-l%jpi-l,eff e L
. ' ¥ i-1
(b b ) i 7 11 7
J _Zl 1 peff D Z ¥ v
. , Rotation about "'z
i-1
T !
|
Vector from i-1 to the end L . |
1
effector l. Z—
X 7
: : «--"T d
Prismatic DOF R
: T i-1%
» Translates along i-! 'z Y X
_b
J =z

Extension/contraction along "



Calculating the Jacobian: Velocity

Rotational DOF

) X
= «
Y a
\\ //
* Rotates about i-1, i -
X i
J :bZ . 4-_—-_-__/ 1 | /!
w; -1, Re ! i,
l //’ i ¥ 1-1Z
Z ¥ ;
Rotation about "'z
i-1
? y
1
1
! -1, |
Prismatic DOF ‘X P
«-—--"" e
7\ ’,
* Translates along -1, A L
. // |l i-1
J, =0 2T
W;

Extension/contraction along ' 'z



Calculating the Jacobian: putting it together

‘]v: Jvl e,

Where

° I _b b b e
rotational Jv,.—Zi-1><( Desi - Pi-1) o x

o _b
+ prismatic J, =z,

J =[J

001 n

Where

+ rotational J =z .

* prismatic J =0




Example 1: calculating the Jacobian

From before;

q1 q1 O ql qz q2 0 2 C[2
S, G, 0 Lisg I, = S, Cqo 0 Lsg
0 1 0 o 0 1 0
o 0 0 1 o 0 0 1
Cq, S, 0 13ng
2T, = S,  Cq, 0 I3s,
0 o 1 O
0 o 0 1
0 00
—[0s 05 0p |
1 11




JV1:OZAO(J(003_OOO)— 0
l1l
X
Jv2:0216(003_001): 0
lll
X
0~ 0 0
v3: Zz"( 0;— 02)_ 0
lll
=15, =158, 135,
J,= I1C1+12C12+13C123
0

Example 1: calculating the Jacobian

PRI PYSTE J Y ol 0 =181 1,51, 15815
XL s +1,8, 41538, |~ |0 Lc,+lcp,+lcyy,
0 0 0
Lici+l,c04150003 l,c, — 1,81, — 138153
XIS+l s, +l8, | =18, || =] Ly, +lc,
0 0 0
Lici+lycp+l;C005 lici+l,cqy —15 8153
XL sy 41,8+ 58 |~ 18 +1,8y, || ] 150,
0 0
=l,8,=138,, =138y,
o ST s
0 0




Example 1: calculating the Jacobian

=L, =1,8,= 158,

(YR JPYRPS J el
0

0
0
1

—1,5,,=158,5

[,C1pH13C3
0

0
0
1

—138,,

[3C153
0

0
0
1




Think-pair-share

Calculate the end effector Jacobian
with respect to the base frame



Example 2: calculating the Jacobian

The kinematics of this arm are
described by the following:

0 — -s;, 0 ¢ O
1o 1 0
0 0 O 1
c, —s, 0 L
1T2: s, ¢, 0 s,
0O 0 1 0
0O 0 0 1
C3 —3S3 [3¢4
2T = S3

!

w
o= O O

P—

w

W

w



Example 2: calculating the Jacobian

0 0
b. . _
Py= 0 bZOZ 0
0 1
b _ ) o
pl_ 0 bzlz Cl
L, 0
. —lycqc, -5,
p,= _1251C2 b22= c,
,s,%1; 0
—c1(12c2+l3cz3)
b . _
p;= —51(12c2+13c23)

l,8,+138y3+1;




Example 2: calculating the Jacobian

0
0 _C1(12C2+I3C23) 51(12C2+I3C23) 7 =0
0 |X _51(12C2+I3C23) = _C1(12C2+I3C23) B 1
! [,s,+15 8,5+ 0 -,
—C(lc+lc) c(lc+lc) Jo.=| €
111pCyTl3Cy5 1|l CyTl3C3 2
¢ = 0
_51(12C2+I3C23) (
l,s,+15s,, I
— (113053 [3¢1S3
6| =S, oy =] 158,55

5,

[5¢,5




Example 2: calculating the Jacobian

51(1202+13023) cl(lzcz+13c23) l,c.s

3C153
_C1(12C2+13C23) 51(12 C2+13C23) [5¢,855
0 l,c,+15c,, [,Cyq
0 —$; — S
0 C, C,
1 0 0




Expressing the Jacobian in Different Reference
Frames

In the preceeding, the Jacobian has been
expressed in the base frame

* [t can be expressed in other reference
frames using rotation matrices

Velocity is transformed from one
reference frame to another using:

kp:kabp

"p=R,’p

Therefore, the velocity Jacobian can be

transformed using: (g b
v ' Yv



Expressing the Jacobian in Different Reference
Frames

First, let’'s express angular velocity in a
different reference frame:

bp :S(ba))bp «— Def'n of angular velocity
‘R p=R,S("0) p

“p=R SV R p

“D :S(kaba))kp

k b . .
= R "w <« Angular velocity can also be rotated by a rotation
matrix

Therefore, the angular velocity Jacobian

can be transformed using: (7 Zpby
o b “w



Expressing the Jacobian in Different Reference
Frames

Therefore, the full Jacobian is rotated:

k
R, 0

b
J
k
0 "R,

kJ:




Different Jacobian Reference Frames: Example

Express the Jacobian for the three-link arm in the a-"
reference frame of the end effector:

2
Cp3 —Si3 0 X
0 —
R3=[s,; ¢ 0
0 0 1
—lsi=lysp, =5 =SS, — 1Sy
Licytlycptlycyy  Lep+l3es  Iyepy
I 0 0 0
0 0 0
0 0 0
1 1 1 |




Different Jacobian Reference Frames: Example

Express the Jacobian for the three-link arm in they a-"
reference frame of the end effector:

ZX'\{
Cip3 —Sppz 0
0 —
Ry=|s,)3 €3 O
0 0
i3 Sy 0 0 0 0 =l s =15 =35y s =138, —l3syy,
“Sis G O\ Leytheptlyeyy  Leptheys iy
3 7= 0 0 1 0 0 0 0
0 0 0 c¢p Spy O 0 0 0
0 0 0 -s,, ¢, 0 0 0 0
o0 0 0 0o 0 1 1 1 .




Think-pair-share

Given OJ (in base frame)

Given: BRO and 4R3

Calculate: 4]
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