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Differential Kinematics
Up to this point, we have only considered the 

relationship of the joint angles to the 
Cartesian location of the end effector:
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But what about the first derivative?

• This would tell us the velocity of the end 
effector as a function of joint angle 
velocities.
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Motivating Example
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Consider a one-link arm

• As the arm rotates, the end effector 
sweeps out an arc

• Let’s assume that we are only 
interested in the     coordinate… 
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Forward kinematics:
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Differential kinematics:
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6.          goto 2. 

Motivating Example

Suppose you want to move the end 
effector above a specified point, gx
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Goal: move the end 
effector onto this line

Answer #1:

Answer #2:
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Motivating Example

This controller moves the link asymptotically toward the goal 
position.



Intro to the Jacobian

Velocity Jacobian

x⃗=[ l1cos(q1 )+l2 cos(q1+q2 )
l1sin(q1 )+l2sin (q1+q2 ) ]
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Forward kinematics of the two-
link manipulator
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Chain rule:

If the Jacobian is square 
and full rank, then we 
can invert it:

Intro to the Jacobian

1J 
joint ctlr

joint position 
sensor



Jacobian

The Jacobian relates joint velocities with end effector twist:

qJ 

End effector twist

Jacobian

Joint angle velocities

• First derivative of joint angles:

It turns out that you can “easily” compute the Jacobian for arbitrary 
manipulator structures

• This makes differential kinematics a much easier sub-problem than 
kinematics in general.



What is Twist?

End effector twist:

• Twist is a concatenation of linear 
velocity and angular velocity:

• As we will show in a minute, linear 
and angular velocity have different 
units

Linear velocity

Angular velocity



What is Twist?

End effector twist:

• Twist is a concatenation of linear 
velocity and angular velocity:

• As we will show in a minute, linear 
and angular velocity have different 
units

Linear velocity

Angular velocity

What is angular velocity?

Angular velocity is a vector that:

– points in the direction of the axis of rotation

– has magnitude equal to the velocity of rotation



What is Angular Velocity?

Angular velocity is a vector that:

– points in the direction of the axis of rotation

– has magnitude equal to the velocity of rotation

Symbol for angular velocity:

Relation between angular 
velocity and linear velocity:

We will often write it this way:



Angular Velocity Derivation
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qRq a
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bb  Just differentiate all elements of 
the rotation matrix w.r.t. time.
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This is the matrix representation 

of angular velocity

  qSq bbb  This FO differential equation 
encodes how the particle rotates



Twist: Time out for skew symmetry!

S (x )=[ 0 −xz x y

xz 0 −xx

−x y x x 0 ]If you interpret the skew symmetric 
matrix like this:

Then this is another way of writing 
the cross product:   pxpxS 

TSS  Def’n of skew symmetry

S=[ 0 a b
−a 0 c
−b −c 0 ] Skew symmetric matrices 

always look like this



Angular Velocity Derivation
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qq bbb  You probably already know this 
formula
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Twist

Twist concatenates linear and angular velocity:

ξ=[ vω]
Linear velocity

Angular velocity



Jacobian

ξ=[J v

Jω
] q̇
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qJv v Breakdown of the Jacobian:

qJ  

Relation to the derivative: but

That’s not an angular velocity



Calculating the Jacobian
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Approach:

• Calculate the Jacobian one column at a 
time

• Each column describes the motion at the 
end effector due to the motion of that joint 
only.

• For each joint, i, pretend all the other joints 
are frozen, and calculate the motion at the 
end effector caused by i.



Calculating the Jacobian: Velocity

Velocity at end effector due to rotation 
at joint i-1

Velocity at end effector due 
to change in length of 
link i-1

ii
b

effi
b

i
b

eff
b ppp ,1,11    

• The velocity of the end effector 
caused by motion at the i-1 link:
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Calculating the Jacobian: Velocity
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Rotational DOF

• Rotates about
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Calculating the Jacobian: Velocity

Rotational DOF

• Rotates about

Rotation about 
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Calculating the Jacobian: putting it together

J v=[J v1
⋯ J v

n ]
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Where

• rotational

• prismatic 1 i
b

v zJ
i

Jω=[Jω1
⋯ Jω

n ]
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Where

• rotational

• prismatic 0
i

J

J=[ J v1
⋯ J vn

Jω1
⋯ Jωn

]



Example 1: calculating the Jacobian

0 T1=(
cq1

−sq1
0 l1cq1

sq1
cq 1

0 l1 sq1

0 0 1 0
0 0 0 1

) 1 T2=(
cq2

−sq 2
0 l2 cq2

sq2
cq2

0 l2 sq2

0 0 1 0
0 0 0 1

)
From before:

Jω=[ 0 ẑ0
0 ẑ1

0 ẑ2 ]=[0 0 0
0 0 0
1 1 1 ]
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0 0 1 0
0 0 0 1

)



Example 1: calculating the Jacobian

J v 1
=0 ẑ0¿ ( 0o3−

0o0)=[001 ]×([l1 c1+l2 c12+l3 c123

l1 s1+l2 s12+l3 s123

0 ]−[000 ])=[−l1 s1−l2 s12−l3 s123

l1 c1+l2c12+l3 c123

0 ]
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J v 2
=0 ẑ1¿(

0 o3−
0 o1 )=[001 ]×([ l1c1+l2 c12+l3 c123

l1 s1+l2 s12+l3 s123

0 ]−[l1c1

l1 s1

0 ])=[−l2 s12−l3 s123

l2 c12 +l3c123

0 ]
J v 3

=0 ẑ2¿(
0 o3−

0 o2 )=[001 ]×([ l1c1+l2 c12+l3 c123

l1 s1+l2 s12+l3 s123

0 ]−[ l1c1+l2 c12

l1 s1+l2 s12

0 ])=[−l3 s123

l3 c123

0 ]
J v=[−l1s1−l2s12−l3 s123 −l2 s12−l3 s123 −l3 s123

l1c1+l2c12+l3c123 l2c12+l3 c123 l3c123

0 0 0 ]



Example 1: calculating the Jacobian

x0

y0

1q

z0

2q

3q

x1
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J=[J v

Jω ]=[
−l1s1−l2s12−l3 s123 − l2s12−l3 s123 −l3 s123

l1c1+l2c12+l3c123 l2c12+l3 c123 l3c123

0 0 0
0 0 0
0 0 0
1 1 1

]



Think-pair-share

Calculate the end effector Jacobian 
with respect to the base frame
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Example 2: calculating the Jacobian

0 T1=(
−c1 0 −s1 0
−s1 0 c1 0

0 1 0 l1
0 0 0 1

)
1 T2=(

c2 −s2 0 l2 c2

s2 c2 0 l2s2

0 0 1 0
0 0 0 1

)
2 T3=(

c3 −s3 0 l3 c3

s3 c3 0 l3s3

0 0 1 0
0 0 0 1

)

The kinematics of this arm are 
described by the following:
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Example 2: calculating the Jacobian

 0301
ppzJ bbb
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 1312
ppzJ bbb
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 2323
ppzJ bbb
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b p0=(000)
b p1=(00l1)
b p2=(−l2c1c2

−l2 s1c2

l2 s2+l1
)

b p3=(−c1 (l2c2+l3 c23 )
−s1 (l2c2+l3c23 )
l2s2+l3 s23+l1

)

b z0=(001 )
b z1=(−s1

c1

0
)

b z2=(−s1

c1

0
)
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Example 2: calculating the Jacobian

J v 1
=(001)×(−c1 (l2 c2+l3c23 )

−s1 (l2 c2+l3 c23 )
l2 s2+l3 s23+l1

)=( s1 (l2 c2+l3 c23 )
−c1 (l2c2+l3 c23 )

0
) Jω1

=(001)
Jω2

=(−s1

c1

0 )
Jω3

=(−s1

c1

0 )
J v 2

=(−s1

c1

0 )¿(−c1 (l2 c2+l3 c23 )
−s1 (l2c2+l3 c23 )

l2 s2+l3 s23
)=(c1 (l2 c2+l3 c23 )

s1 (l2 c2+l3 c23 )
l2 c2+l3 c23

)
J v 3

=(−s1

c1

0 )¿(−c1 l3 c23

−s1 l3 c23

l3 s23
)=(l3 c1 s23
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)
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Example 2: calculating the Jacobian

J=(
s1 (l2c2+l3 c23 ) c1 (l2c2+l3c23 ) l3c1s23

−c1 ( l2c2+l3c23) s1 (l2 c2+l3c23) l3c1s23

0 l2 c2+ l3c23 l3c23

0 −s1 −s1
0 c1 c1

1 0 0
)
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Expressing the Jacobian in Different Reference 
Frames

In the preceeding, the Jacobian has been 
expressed in the base frame

• It can be expressed in other reference 
frames using rotation matrices

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

pRp b
b

kk 

Velocity is transformed from one 
reference frame to another using:

pRp b
b

kk  

Therefore, the velocity Jacobian can be 
transformed using:

v
b

b
k

v
k JRJ 



Expressing the Jacobian in Different Reference 
Frames

First, let’s express angular velocity in a 
different reference frame:

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

  pSp bbb  Def’n of angular velocity

  pSRpR bb
b

kb
b

k 

  pRSRp kT
b

kb
b

kk 

  pRSp kb
b

kk 

 b
b

kk R Angular velocity can also be rotated by a rotation 
matrix

Therefore, the angular velocity Jacobian 
can be transformed using:

 JRJ b
b

kk 



Expressing the Jacobian in Different Reference 
Frames

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

Therefore, the full Jacobian is rotated:

k J=(
k Rb 0

0 k Rb
)b J



Different Jacobian Reference Frames: Example

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

Express the Jacobian for the three-link arm in the 
reference frame of the end effector:

0 R3=(c123 −s123 0
s123 c123 0

0 0 1
)

J=[
−l1s1−l2 s12−l3 s123 −l2s12−l3 s123 − l3s123

l1c1+l2 c12+l3c123 l2c12+l3c123 l3c123

0 0 0
0 0 0
0 0 0
1 1 1

]



Different Jacobian Reference Frames: Example

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

Express the Jacobian for the three-link arm in the 
reference frame of the end effector:

0 R3=(c123 −s123 0
s123 c123 0

0 0 1
)

3 J=(
c123 s123 0 0 0 0

−s123 c123 0 0 0 0

0 0 1 0 0 0
0 0 0 c123 s123 0
0 0 0 −s123 c123 0

0 0 0 0 0 1
)[
−l1 s1−l2 s12−l3s123 −l2 s12− l3s123 −l3 s123
l1c1+l2c12+l3 c123 l2c12+l3c123 l3 c123

0 0 0
0 0 0
0 0 0
1 1 1

]



Think-pair-share

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

1l

2l
3l

Given         (in base frame)

Given:             and

Calculate:
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