
Cartesian Control (Translation)

Robert Platt
Northeastern University

Two ways of using the manipulator Jacobian

q1

q2

q3

x0

y0

z0

z1

x1

y1 z2

x2
y2

z3

y3

x3

l1

l2

l3

J=(−s1 (l2c2+l3c23) −c1 (l2c2+l3 c23) − l3c1s23

c1 (l2c2+l3c23) −s1 (l2c2+l3c23) − l3c1s23

0 l2c2+l3c23 l3c23
)

1. use Jacobian to find numerical solution to IK
– solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
– solution is a trajectory through joint space

Two ways of using the manipulator Jacobian

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l

J=(−s1 (l2c2+l3c23) −c1 (l2c2+l3 c23) − l3c1s23

c1 (l2c2+l3c23) −s1 (l2c2+l3c23) − l3c1s23

0 l2c2+l3c23 l3c23
)

1. use Jacobian to find numerical solution to IK
– solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
– solution is a trajectory through joint space

Numerical IK Solution (method 1)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^{-1} dx
7. q = q + dq
8. return q* = q

Numerical IK Solution (method 1)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^{-1} dx
7. q = q + dq
8. return q* = q

Idea:

Numerical IK Solution (method 2)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^T dx
7. q = q + dq
8. return q* = q

This also works

Numerical IK Solution (method 2)

Where does this come from?

where

Position error

Do gradient descent on L

L2 loss

Numerical IK Solution (method 2)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^T dx
7. q = q + dq
8. return q* = q

So, this is just gradient descent on L
– people sometimes use Newton’s method
 to get faster convergence

Two ways of using the manipulator Jacobian

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l

J=(−s1 (l2c2+l3c23) −c1 (l2c2+l3 c23) − l3c1s23

c1 (l2c2+l3c23) −s1 (l2c2+l3c23) − l3c1s23

0 l2c2+l3c23 l3c23
)

1. use Jacobian to find numerical solution to IK
– solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
– solution is a trajectory through joint space

Two ways of using the manipulator Jacobian

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l

J=(−s1 (l2c2+l3c23) −c1 (l2c2+l3 c23) − l3c1s23

c1 (l2c2+l3c23) −s1 (l2c2+l3c23) − l3c1s23

0 l2c2+l3c23 l3c23
)

1. use Jacobian to find numerical solution to IK
– solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
– solution is a trajectory through joint space

Called Cartesian Control

Cartesian control

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l1J

FK (q)

xd

x q

δ x δ q qd

q

joint ctlr

joint position
sensor

Cartesian control is almost identical to the numerical IK solution

Difference: Cartesian control actually moves the arm during the
 optimization process.

Think-pair-share

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l1J

FK (q)

xd

x q

δ x δ q qd

q

joint ctlr

joint position
sensor

1. what does the velocity profile look like for this controller?

2. how would you modify it to move the arm at constant
velocity?

3. How would you modify it to follow a trapezoidal velocity
profile?

Question

Video credit: Muhammad Tufail

This is not just IK – can use Cartesian control to get entire trajectory

– How?

Non-square Jacobian matrix

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^{-1} dx
7. q = q + dq
8. return q* = q

Can only take inverse of
Jacobian it is square

Example of a non-square Jacobian matrix:

Non-square Jacobian matrix

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

J (q)=[− l1s1− l2s12−l3 s123 −l1 s1− l2s12 −l1s1

l1c1+l2c12+ l3c123 l1c1+l2c12 l1c1
]

[ẋẏ]=J (q)[q̇1

q̇2

q̇3
] Two equations of three

variables each…

This is an under-constrained system of equations.

• multiple solutions

• there are multiple joint angle velocities that realize the
same EFF velocity.

If the Jacobian is not a square matrix, then
you can’t invert it.

• what next?

Non-square Jacobian matrix

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3l

qJx

We are looking for a matrix such that:#J

We have:

xJq # qJx

Two cases:

• Underconstrained manipulator (redundant)

• Overconstrained

Generalized inverse

Generalized inverse:

• for the underconstrained manipulator: given , find a vector

that minimizes s.t.

• for the overconstrained manipulator: given , find a vector

 s.t. Is minimized

This condition must be met when is at a minimum
subject to

Psuedoinverse definition: (underconstrained)

Given a desired twist, , find a vector of
joint velocities, , that satisfies
 while minimizing

x0

y0

1q

z0

2q

3q

x1

y1

y2

x2

x3

y3

1l

2l
3lqJxd q

qqqf T)(

dx

Jacobian Pseudoinverse: Redundant manipulator

Use lagrange multiplier method:)()(zgzf zz

Minimize subject to :

)(zf

0)(zg

0)(zg

)(zf

Minimize joint velocities

qqqf T
2
1)(

0)(xqJqg

)()(zgzf zz

T
q qqf)(

Jqgq)(

Jq TT

TJq

Minimize

Subject to

Jacobian Pseudoinverse: Redundant manipulator

So, the pseudoinverse calculates the
vector of joint velocities that
satisfies while
minimizing the squared magnitude
of joint velocity ().

• Therefore, the pseudoinverse
calculates the least-squares
solution.

TJq

 TJJqJ

 qJJJ T 1

 xJJ T 1

I won’t say why, but if is full rank, then
 is invertible

J
TJJ

TJq

 xJJJq TT 1

 1#
 TT JJJJ

xJq #

qJxd

qqT

Jacobian Pseudoinverse: Redundant manipulator

Calculating the pseudoinverse

The pseudoinverse can be calculated using two different
equations depending upon the number of rows and columns:

 1#
 TT JJJJ Underconstrained case (if there are more

columns than rows (m<n))

 TT JJJJ
1#

 Overconstrained case (if there are more rows
than columns (n<m))

1# JJ If there are an equal number of rows and columns (n=m)

These equations can only be used if the Jacobian is full rank;
otherwise, use singular value decomposition (SVD):

Rank deficient Jacobian matrices

What if Jacobian is not full rank?
– rows/columns not linearly independent
– columns do not span Cartesian space
– Determinant of JJ^T is zero

Can use Singular Value Decomposition (SVD)

Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

TVUJ

For an under-constrained matrix, is a
diagonal matrix of singular values:

mm nnnm

J=U [
σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0

0 0 σ3 0 0 0 0
0 0 0 ⋱ 0 0 0
0 0 0 0 σn 0 0

]V T

Singular values

Calculating the pseudoinverse using SVD

TVUJ

J ¿=V [
1
σ1

0 0 0 0

0
1
σ 2

0 0 0

0 0
1
σ3

0 0

0 0 0 ⋱ 0

0 0 0 0
1
σn

0 0 0 0 0
0 0 0 0 0

]UTTUVJ 1#

J=U [
σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0

0 0 σ3 0 0 0 0
0 0 0 ⋱ 0 0 0
0 0 0 0 σn 0 0

]V T

Calculating the pseudoinverse using SVD

TVUJ

J ¿=V [
1
σ1

0 0 0 0

0
1
σ 2

0 0 0

0 0
1
σ3

0 0

0 0 0 ⋱ 0

0 0 0 0
1
σn

0 0 0 0 0
0 0 0 0 0

]UT

TUVJ 1#

J=U [
σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0

0 0 σ3 0 0 0 0
0 0 0 ⋱ 0 0 0
0 0 0 0 σn 0 0

]V T

What if some of the singular values are zero?

Calculating the pseudoinverse using SVD

TVUJ

J ¿=V [
1
σ1

0 0 0 0

0
1
σ 2

0 0 0

0 0
1
σ3

0 0

0 0 0 ⋱ 0

0 0 0 0
1
σn

0 0 0 0 0
0 0 0 0 0

]UT

TUVJ 1#

J=U [
σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0

0 0 σ3 0 0 0 0
0 0 0 ⋱ 0 0 0
0 0 0 0 σn 0 0

]V T

What if some of the singular values are zero?

Answer: you could set them to small positive nonzero values.

Properties of the pseudoinverse

Moore-Penrose conditions:

Generalized inverse: satisfies condition 1

Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

Other useful properties of the pseudoinverse:

JJJJ #

JJJJ

 ## JJJJ
T

 JJJJ

T ##

1.

2.

3.

4.

Think-pair-share

Prove that one of the Moore-Penrose conditions holds for the
pseudoinverse using the SVD:

JJJJ #

JJJJ

 ## JJJJ
T

 JJJJ

T ##

1.

2.

3.

4.

Jacobian Transpose v Pseudoinverse

What gives?

• Which is more direct? Jacobian pseudoinverse or
transpose?

TJq #Jq or

They do different things:

• Transpose: move toward a reference pose as quickly as
possible

• One dimensional goal (squared distance meteric)

• Pseudoinverse: move along a least squares reference twist
trajectory

• Six dimensional goal (or whatever the dimension of the
relevant twist is)

The pseudoinverse moves the end effector in
a straight line path toward the goal pose
using the least squared joint velocities.

• The goal is specified in terms of the
reference twist

• Manipulator follows a straight line path in
Cartesian space

dx

The transpose moves the end effector toward
the goal position

• In general, not a straight line path in
Cartesian space

• Instead, the transpose follows the gradient
in joint space

dx

Jacobian Transpose v Pseudoinverse

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

