Cartesian Control (Translation)

Robert Platt
Northeastern University

Two ways of using the manipulator Jacobian

_51(12C2+13C23) _C1(12C2+I3C23) — 130,55,
J= C1(12C2+13C23) _51(12C2+I3C23) _I3C1523
0 [,Cytl5C0 [5C);

1. use Jacobian to find numerical solution to IK
— solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
— solution is a trajectory through joint space

Two ways of using the manipulator Jacobian

_51(12C2+13C23) _C1(12C2+I3C23) — 130,55,
J= C1(12C2+13C23) _51(12C2+I3C23) _I3C1523
0 [,Cytl5C0 [5C);

1. use Jacobian to find numerical solution to IK
— solution is just a single configuration

Numerical IK Solution (method 1)

Input: x*

Output: g*

1. repeat until dx is small:

2. init g to random joint configuration
3 repeat K times:

4. X = FK(Q)

5. dx = x*-Xx

6 dq = stepsize * J-1} dx
7. q=q+dg

8. returng* =q

Numerical IK Solution (method 1)

Input: x*

Output: g*

1. repeat until dx is small: lgea:
2. init g to random joint configuration C]

3 repeat K times:

4. x = FK(Q)

5. dx = x*-Xx RS

6 dqg = stepsize *JN-1}:dx

7. q:q+dq ‘el

8. return g* = @

Numerical IK Solution (method 2)

Input: x*

Output: g* _)
1. repeat until dx is small: This also works

2. init g to random joint configuration C] — JTj;

3 repeat K times: .
4. X = FK(Q)

5. dx = x*-x RER

6 dq = stepsize *JAT tix

7. q=q+dq ‘-

8. returng* =q

Numerical IK Solution (method 2)

Where does this ¢ = JTj; come from?

/: - /:
Position error

L__ee where e=x" —x
oL 7 0x
- — —6 —_—
8(] 8(] %Do gradient descent on L:|
| OL"

= — 0O —
q g

Ozt

q. = Xx— € = OCJTe

dq

Numerical IK Solution (method 2)

Input: x*

Output: g*

1. repeat until dx is small:

2. init g to random joint configuration
3 repeat K times:

4. X = FK(Q)

5. dx = x*-Xx

6 dq = stepsize * INT dx

7. q=q+dg

8. returng* =q

So, this is just gradient descent on L
— people sometimes use Newton’s method
to get faster convergence

Two ways of using the manipulator Jacobian

_51(12C2+13C23) _C1(12C2+I3C23) — 130,55,
J= C1(12C2+13C23) _51(12C2+I3C23) _I3C1523
0 [,Cytl5C0 [5C);

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
— solution is a trajectory through joint space

Two ways of using the manipulator Jacobian

_51(12C2+13C23) _C1(12C2+I3C23) — 130,55,
J= C1(12C2+13C23) _51(12C2+I3C23) _I3C1523
0 [,Cytl5C0 [5C);

Called Cartesian ControI:|

2. use Jacobian to find arm trajectories that achieve a desired
end effector path
— solution is a trajectory through joint space

Cartesian control

q
S x I) 4, \jointctlr
q joint position
FK(Q) am sensor

Cartesian control is almost identical to the numerical IK solution

Difference: Cartesian control actually moves the arm during the
optimization process.

Think-pair-share

q
5 x =) 4, \ joint ctlr
X q joint position
FK(q) - sensor

1. what does the velocity profile look like for this controller?

2. how would you modify it to move the arm at constant
velocity?

3. How would you modify it to follow a trapezoidal velocity
profile?

Question

This is not just IK — can use Cartesian control to get entire trajectory

— How?

Video credit: Muhammad Tufall

Non-square Jacobian matrix

Input: x*

Output: g*

1. repeat until dx is small:

2. Init g to random joint configuration
3 repeat K times:

4. x = FK(Q)

5. dx = x*-x

6 dq = stepsize * JN{-1} dx
7. q=q+dq

8. return g* = ¢

Can only take inverse of
Jacobian it is square

Non-square Jacobian matrix

Example of a non-square Jacobian matrix:

y
Jlg|= —LS1= 1S58 —lisi=lysy, —1lis,
| Legrleptlyey Lot o Loy |
. d
Xl=Jlq] g, | <«— Two equations of three
y 2 variables each...

q3
This is an under-constrained system of equations.
* multiple solutions

* there are multiple joint angle velocities that realize the
same EFF velocity.

Non-square Jacobian matrix

If the Jacobian is not a square matrix, then
you can’t invert it.

e what next?

We have: X :Jq

We are looking for a matrix J* such that:

Q=1 — 5=

Generalized Inverse

Two cases:
* Underconstrained manipulator (redundant)

e (Qverconstrained

Generalized inverse:
« for the underconstrained manipulator: given x , find a vector q

that minimizes HqH2 st. £ =Jgq

- for the overconstrained manipulator: given I , find a vector ¢

s.t. Haj — Jq°H2Is minimized

Jacobian Pseudoinverse: Redundant manipulator

Psuedoinverse definition: (underconstrained)

Given a desired twist, x,, find a vector of
joint velocities, g , that satisfies x; =Jq
while minimizing f (q) =q" g

/

Minimize joint velocities

Minimize f(z)subjectto g(z) =0 :

Use lagrange multiplier method: V, f(z) =AV,g(z)

/

This condition must be met when f(2) is at a minimum
subject to g(z) =0

Jacobian Pseudoinverse: Redundant manipulator

V,f(z) =AV,g(z)

f(q) :%QTQ = Minimize

g(q) =Jg- x =0 *+—— Subject to
V,f@=q"

V,9(@) =J

qg =A'J

qg=J"A

Jacobian Pseudoinverse: Redundant manipulator
q=J"%
Jg =17)2
A :(JJT)-lféI < | won't say why, but if J is full rank, then
N JJ" is invertible
2 =(17) "
q=J"A

i :JT(]]T)'lx So, the pseudoinverse calculates the

vector of joint velocities that

4 _ o7 7)1 satisfies x, =Jq while
Jm=J (“U) minimizing the squared magnitude
qg=J%x < of joint velocity (g*q)-

* Therefore, the pseudoinverse
calculates the least-squares
solution.

Calculating the pseudoinverse

The pseudoinverse can be calculated using two different
equations depending upon the number of rows and columns:

/

J* =JT(JJT)_1 Underconstrained case (if there are more
columns than rows (m<n))

7# =(J77)"JT Overconstrained case (if there are more rows
than columns (n<m))
Jt =g If there are an equal number of rows and columns (n=m)

These equations can only be used if the Jacobian is full rank;
otherwise, use singular value decomposition (SVD):

Rank deficient Jacobian matrices

What if Jacobian is not full rank?
— rows/columns not linearly independent
— columns do not span Cartesian space
— Determinant of JJT is zero

Can use Singular Value Decomposition (SVD)

Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

For an under-constrained matrix, 2 is a
diagonal matrix of singular values:

6, 0 0 0 0 0 O
J =UzV’ 0 o, 0 0 0 0 0
/1N J=Ulo 0 o, 0 0 0 OV’

mXm mxn nXxn 60 0 -~ 0 00

0 0 0 0 g, 0 0

E Singular values

Calculating the pseudoinverse using SVD

0
0

0

0
0o 0o olv'

0

J =UzVv"’

-lUT

J* =

Calculating the pseudoinverse using SVD

g, 0 0 0 0 0 O
0 g, 0 0 0 0 0
J =UzVv"' J=U|lo 0 o, 0 0 0 0|V
o o0 o0 =~ 0 0 O
0 0 0 0 g, 0 O
I. i l
Gil 0O 0O 0 O
o X o0 0o o
GZ
L_y|0 O Gi o o] ,
J# :VZ'lUT o 0o o 0
o o 0o o +
Gn
O 0 0 0 O
0 0 0 0 O

What if some of the singular values are zero?

Calculating the pseudoinverse using SVD

g 0 0 0 O O O
0O oo 0 0 0 0 O
J =UzVv"' J=U|lo 0 o, 0 0 0 0|V
o o0 o0 - 0 00
0O 0 0 0 o, 0 O
I. i l
Gil 0O 0O 0 O
o X o0 0o o
GZ
Liyl® O Gi N
J# :VZ'lUT o 0o o 0
o o 0o o +
Gn
O 0 0 0 O
0o 0o 0o o o

What if some of the singular values are zero?

Answer: you could set them to small positive nonzero values.

Properties of the pseudoinverse

Moore-Penrose conditions:

1. J*JJ" =J*
2. JJ*J =J

3. () =7
a. (53] =g%7

Generalized inverse: satisfies condition 1
Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

Other useful properties of the pseudoinverse: (J#)# =J

Think-pair-share

Prove that one of the Moore-Penrose conditions holds for the
pseudoinverse using the SVD:

1. J*JJ" =J*
2. JJ*J =J

3. () =7
a. (73] =g%g

Jacobian Transpose v Pseudoinverse

What gives?

* Which is more direct? Jacobian pseudoinverse or
transpose?

q=J'& or q=J"¢

They do different things:

* Transpose: move toward a reference pose as quickly as
possible

* One dimensional goal (squared distance meteric)

* Pseudoinverse: move along a least squares reference twist
trajectory

* Six dimensional goal (or whatever the dimension of the
relevant twist Is)

Jacobian Transpose v Pseudoinverse

The pseudoinverse moves the end effector in ,'
a straight line path toward the goal pose K
using the least squared joint velocities. /

/

* The goal is specified in terms of the e

reference twist X,

* Manipulator follows a straight line path in
Cartesian space

The transpose moves the end effector toward /
the goal position)/
I
* |n general, not a straight line path in !
Cartesian space .
X4

* Instead, the transpose follows the gradient
In joint space

	Reinforcement Learning Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

