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Two ways of using the manipulator Jacobian
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1. use Jacobian to find numerical solution to IK
– solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired 
end effector path
– solution is a trajectory through joint space
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Numerical IK Solution (method 1)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^{-1} dx
7. q = q + dq
8. return q* = q



Numerical IK Solution (method 1)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^{-1} dx
7. q = q + dq
8. return q* = q

Idea:              



Numerical IK Solution (method 2)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^T dx
7. q = q + dq
8. return q* = q

This also works    



Numerical IK Solution (method 2)

Where does this                       come from?

where

Position error

Do gradient descent on L

L2 loss



Numerical IK Solution (method 2)

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^T dx
7. q = q + dq
8. return q* = q

So, this is just gradient descent on L
– people sometimes use Newton’s method 
   to get faster convergence



Two ways of using the manipulator Jacobian
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Two ways of using the manipulator Jacobian
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1. use Jacobian to find numerical solution to IK
– solution is just a single configuration

2. use Jacobian to find arm trajectories that achieve a desired 
end effector path
– solution is a trajectory through joint space

Called Cartesian Control



Cartesian control
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Cartesian control is almost identical to the numerical IK solution

Difference: Cartesian control actually moves the arm during the 
    optimization process.



Think-pair-share
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1. what does the velocity profile look like for this controller?

2. how would you modify it to move the arm at constant 
velocity?

3. How would you modify it to follow a trapezoidal velocity 
profile?



Question

Video credit: Muhammad Tufail

This is not just IK – can use Cartesian control to get entire trajectory

– How?




Non-square Jacobian matrix

Input: x*
Output: q*
1. repeat until dx is small:
2. init q to random joint configuration
3. repeat K times:
4. x = FK(q)
5. dx = x*-x
6. dq = stepsize * J^{-1} dx
7. q = q + dq
8. return q* = q

Can only take inverse of 
Jacobian it is square



Example of a non-square Jacobian matrix:

Non-square Jacobian matrix
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variables each…

This is an under-constrained system of equations.

• multiple solutions

• there are multiple joint angle velocities that realize the 
same EFF velocity.



If the Jacobian is not a square matrix, then 
you can’t invert it.

• what next?

Non-square Jacobian matrix
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We are looking for a matrix       such that:#J

We have: 

xJq  # qJx  



Two cases:

• Underconstrained manipulator (redundant)

• Overconstrained

Generalized inverse

Generalized inverse:

• for the underconstrained manipulator: given     , find a vector      

that minimizes            s.t.

• for the overconstrained manipulator: given     , find a vector                    

          s.t.                         Is minimized



This condition must be met when          is at a minimum 
subject to

Psuedoinverse definition: (underconstrained)

Given a desired twist,      , find a vector of 
joint velocities,     , that satisfies                 
  while minimizing  
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Use lagrange multiplier method: )()( zgzf zz  
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Jacobian Pseudoinverse: Redundant manipulator



So, the pseudoinverse calculates the 
vector of joint velocities that 
satisfies                     while 
minimizing the squared magnitude 
of joint velocity (          ).

• Therefore, the pseudoinverse 
calculates the least-squares 
solution.

TJq 

 TJJqJ 

  qJJJ T 1


  xJJ T 1


I won’t say why, but if    is full rank, then      
 is invertible

J
TJJ

TJq 

  xJJJq TT  1
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Jacobian Pseudoinverse: Redundant manipulator



Calculating the pseudoinverse

The pseudoinverse can be calculated using two different 
equations depending upon the number of rows and columns:

  1# 
 TT JJJJ Underconstrained case (if there are more 

columns than rows (m<n))

  TT JJJJ
1# 

 Overconstrained case (if there are more rows 
than columns (n<m))

1# JJ If there are an equal number of rows and columns (n=m)

These equations can only be used if the Jacobian is full rank; 
otherwise, use singular value decomposition (SVD):



Rank deficient Jacobian matrices

What if Jacobian is not full rank?
– rows/columns not linearly independent
– columns do not span Cartesian space
– Determinant of JJ^T is zero

Can use Singular Value Decomposition (SVD)



Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

TVUJ 

For an under-constrained matrix,       is a 
diagonal matrix of singular values:

mm nnnm



J=U [
σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0

0 0 σ3 0 0 0 0
0 0 0 ⋱ 0 0 0
0 0 0 0 σn 0 0

]V T

Singular values



Calculating the pseudoinverse using SVD
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Calculating the pseudoinverse using SVD
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What if some of the singular values are zero?



Calculating the pseudoinverse using SVD

TVUJ 
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What if some of the singular values are zero?

Answer: you could set them to small positive nonzero values.



Properties of the pseudoinverse

Moore-Penrose conditions:

Generalized inverse: satisfies condition 1

Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

Other useful properties of the pseudoinverse:

JJJJ #
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4.  



Think-pair-share

Prove that one of the Moore-Penrose conditions holds for the 
pseudoinverse using the SVD:
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1.  

2.  

3.  

4.  



Jacobian Transpose v Pseudoinverse

What gives?

• Which is more direct? Jacobian pseudoinverse or 
transpose?

TJq  #Jq or

They do different things:

• Transpose: move toward a reference pose as quickly as 
possible

• One dimensional goal (squared distance meteric)

• Pseudoinverse: move along a least squares reference twist 
trajectory

• Six dimensional goal (or whatever the dimension of the 
relevant twist is)



The pseudoinverse moves the end effector in 
a straight line path toward the goal pose 
using the least squared joint velocities.

• The goal is specified in terms of the 
reference twist

• Manipulator follows a straight line path in 
Cartesian space

dx

The transpose moves the end effector toward 
the goal position

• In general, not a straight line path in 
Cartesian space

• Instead, the transpose follows the gradient 
in joint space

dx

Jacobian Transpose v Pseudoinverse
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