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These notes contain materials from Peter Corke's book 
and from Howie Choset's lecture materials.



Problem we want to solve

Starting configuration

Goal configuration

Given:
– a point-robot (robot is a point in space)
– a start and goal configuration

Find:
– path from start to goal that does not result in a collision



Problem we want to solve

Given:
– a point-robot (robot is a point in space)
– a start and goal configuration

Find:
– path from start to goal that does not result in a collision

Assumptions:
– the position of the robot can always be measured perfectly
– the motion of the robot can always be controlled perfectly
– the robot can move in any directly instantaneously



First attempt: BUGs!

Bug algorithms:
– assume only local knowledge of the environment is available
– simple behaviors: follow a wall; follow straight line toward goal

What the heck?



First attempt: BUG 0

BUG 0:
1. head toward goal
2. if hit a wall, turn left
3. follow wall until a line toward goal will move you away from wall.

(assume we only have local sensing – we cannot sense position 
of walls we are not touching)

assume a left-
turning robot

The turning direction 
might be decided 

beforehand…



Question

What does BUG0 do here?

start

goal



Second attempt: BUG 1

BUG 1:
1. move on straight line toward goal
2. if obstacle encountered, circumnavigate entire obstacle and remember how 

close bug got to goal
3. return to closest point and continue on a straight line toward goal
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BUG 1:
1. move on straight line toward goal
2. if obstacle encountered, circumnavigate entire obstacle and remember how 

close bug got to goal
3. return to closest point and continue on a straight line toward goal



Question

What does BUG1 do here?

start

goal



BUG 1 Performance Analysis

How far does BUG 1 travel before reaching goal?

Best case scenario (lower bound):

Worst case scenario (upper bound):

Where 
– D denotes distance from start to goal and 
– P_i denotes perimeter of ith obstacle



Questions

Is BUG 1 complete?

Prove completeness or incompleteness.



Another bug: BUG 2

m-line

1. head toward goal on m-line



Another bug: BUG 2

m-line

1. head toward goal on m-line

2. if you encounter obstacle, follow it
until you encounter m-line again at a
point closer to goal



Another bug: BUG 2

m-line

1. head toward goal on m-line

2. if you encounter obstacle, follow it
until you encounter m-line again at a
point closer to goal

3. leave line and head toward goal again



Another bug: BUG 2

Is BUG 2 complete?
– Why? Why not?



Another bug: BUG 2



Another bug: BUG 2

How bad can it get?

Lower bound: 

Upper bound: 

where n_i is the number of s-line intersections
In the ith obstacle.



Wavefront planner (distance transform)

– intensity of a point denotes its (obstacle-respecting) distance from the goal



Algorithm:
1. L={goal state}, d(goal state) = 2, d(obstacle states) = 1, d(rest of states) = 0
2. while L != null
3.   pop item i from L
4.   for all neighbors j of i such that d(j)==0
5.       d(j) = d(i)+1
6.       push j onto L

L: list of nodes in wave front; initially just the goal state
d: distance function over nodes; initially zero everywhere except goal state

Wavefront planner (distance transform)
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Algorithm:
1. L={goal state}, d(goal state) = 2, d(obstacle states) = 1, d(rest of states) = 0
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3.   pop item i from L
4.   for all neighbors j of i such that d(j)==0
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Wavefront planner (distance transform)

c

For node j, how many steps 
to goal state in terms of d(j)?



Complete?

Optimal?

Prove completeness/optimality or incompletness/non-optimality

Questions

c



Algorithm:

1. L={goal state}, d(goal state) = 2, d(obstacle states) = 1, d(rest of states) = 0
2. while L != null
3.   pop item i from L
4.   for all neighbors j of i such that d(j)==0
5.       d(j) = d(i)+1
6.       push j onto L

c

L: list of nodes in wave front; initially just the goal state
d: distance function over nodes; initially zero everywhere except goal state

Wavefront planner (distance transform)
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