
Cartesian Control
• Analytical inverse kinematics can be difficult 

to derive

• Inverse kinematics are not as well suited for 
small differential motions

• Let’s take a look at how you use the 
Jacobian to control Cartesian position



Cartesian control

Let’s control the position (not orientation) of 
the three link arm end effector:
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We can use the same strategy that we used 
before:



However, this only works if the Jacobian is 
square and full rank…

Cartesian control
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• All rows/columns are 
linearly independent, or

• Columns span 
Cartesian space, or

• Determinant is not zero



What if you want to control the two-
dimensional position of a three-link 
manipulator?

Cartesian control
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 Two equations of three 
variables each…

This is an under-constrained system of equations.

• multiple solutions

• there are multiple joint angle velocities that realize the 
same EFF velocity.



If the Jacobian is not a square matrix (or is 
not full rank), then the inverse doesn’t 
exist…

• what next?

Generalized inverse
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Two cases:

• Underconstrained manipulator (redundant)

• Overconstrained

Generalized inverse

Generalized inverse:

• for the underconstrained manipulator: given     , find any vector      
that minimizes            s.t.

• for the overconstrained manipulator: given     , find any vector                
              s.t.                 Is minimizedqJx  

qx

x q

qJx  



This condition must be met when          is at a minimum 
subject to

Psuedoinverse definition: (underconstrained)

Given a desired twist,      , find a vector of 
joint velocities,     , that satisfies                 
  while minimizing  
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So, the pseudoinverse calculates the 
vector of joint velocities that 
satisfies                     while 
minimizing the squared magnitude 
of joint velocity (          ).

• Therefore, the pseudoinverse 
calculates the least-squares 
solution.
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I won’t say why, but if    is full rank, then      
 is invertible
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Calculating the pseudoinverse

The pseudoinverse can be calculated using two different 
equations depending upon the number of rows and columns:

  1#  TT JJJJ Underconstrained case (if there are more 
columns than rows (m<n))

  TT JJJJ
1#  Overconstrained case (if there are more rows 

than columns (n<m))
1#  JJ If there are an equal number of rows and columns (n=m)

These equations can only be used if the Jacobian is full rank; 
otherwise, use singular value decomposition (SVD):



Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:
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Properties of the pseudoinverse

  JJ ##

   ## TT
JJ 

Moore-Penrose conditions:

JJJJ #

### JJJJ 

  ## JJJJ
T 

  JJJJ
T ## 

Generalized inverse: satisfies condition 1

Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

1.  

2.  

3.  

4.  

Other useful properties of the pseudoinverse:
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Controlling Cartesian Position

Procedure for controlling position:

1. Calculate position error:

2. Multiply by a scaling factor:

3. Multiply by the velocity Jacobian pseudoinverse:

errx

errerr xx  

errv xJq #



Controlling Cartesian Orientation
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How does this strategy work for orientation control?

• Suppose you want to reach an orientation of

• Your current orientation is

• You’ve calculated a difference:

• How do you turn this difference into a desired 
angular velocity to use in                  ?  
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Controlling Cartesian Orientation
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You can’t do this:

• Convert the difference to ZYZ Euler angles:

• Multiply the Euler angles by a scaling factor and 
pretend that they are an angular velocity:  rJq #

r

r

Remember that in general:
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The Analytical Jacobian
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If you really want to multiply the angular 
Jacobian by the derivative of an Euler 
angle, you have to convert to the 
“analytical” Jacobian:

Gimbal lock: by using an analytical Jacobian instead of the angular 
velocity Jacobian, you introduce the gimbal lock problems we 
talked about earlier into the Jacobian – this essentially adds 
“singularities” (we’ll talk more about that in a bit…)
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The easiest way to handle this Cartesian 
orientation problem is to represent the 
error in axis-angle format

qJrk  

Controlling Cartesian Orientation

Axis angle delta 
rotation

Procedure for controlling rotation:

1. Represent the rotation error in axis angle format:

2. Multiply by a scaling factor:

3. Multiply by the angular velocity Jacobian 
pseudoinverse:

errr

errerr rr  

errrJq 
#



Controlling Cartesian Orientation

Why does axis angle work?

• Remember Rodrigues’ formula from before:

          
 cos1sin 2  kSkSIeR kS
k

axis angle

  pSp bbb Compare this to the definition of angular velocity:

The solution to this FO diff eqn is:
 tS

t
b b

eR 
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Therefore, the angular velocity gets integrated into an 
axis angle representation



Jacobian Transpose Control

qJx  
The story of Cartesian control so far:

1.  

2.  xJq  #



Jacobian Transpose Control

Here’s another approach:
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Start with a squared position error 
function (assume the poses are 
represented as row vectors)

Gradient descent: take steps 
proportional to       in the 
direction of the negative 
gradient. 

xxx referr Position error:
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orientation error: axis angle orientation of reference pose in 
the current end effector reference frame:

Jacobian Transpose Control

The same approach can be used to control orientation:

 ref
currT kJq 

ref
currk



Jacobian Transpose Control

So, evidently, this is the gradient of that

• Jacobian transpose control descends a squared 
error function.

• Gradient descent always follows the steepest 
gradient

err
T

err xxe 2
1 err

T xJq 



Jacobian Transpose v Pseudoinverse

What gives?

• Which is more direct? Jacobian pseudoinverse or 
transpose?

TJq  #Jq or

They do different things:

• Transpose: move toward a reference pose as quickly as 
possible

• One dimensional goal (squared distance meteric)

• Pseudoinverse: move along a least squares reference twist 
trajectory

• Six dimensional goal (or whatever the dimension of the 
relevant twist is)



The pseudoinverse moves the end effector in 
a straight line path toward the goal pose 
using the least squared joint velocities.

• The goal is specified in terms of the 
reference twist

• Manipulator follows a straight line path in 
Cartesian space

dx

The transpose moves the end effector toward 
the goal position

• In general, not a straight line path in 
Cartesian space

• Instead, the transpose follows the gradient 
in joint space

dx

Jacobian Transpose v Pseudoinverse



Up until now, we’ve used the Jacobian in the twist equation,

Using the Jacobian for Statics

qJ 

Interestingly, you can also use the Jacobian in a statics 
equation:
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Using the Jacobian for Statics

It turns out that both wrenches and twists can be understood 
in terms of a representation of displacement known as a 
screw.

• Therefore, you can calculate work by integrating the dot 
product:
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Using the Jacobian for Statics

Incremental work (virtual work)
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Note that twist can be represented in different 
reference frames:
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Twist: converting between reference frames
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Wrench can also be represented in different reference 
frames:
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Use the virtual work argument to derive 
the relationship:
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Wrench: converting between reference frames
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Use a 6-axis load cell bisecting the 
second link to calculate wrenches at 
the end effector (the tip of the last link)

Converting wrenches: Example

6 axis load cell
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Converting wrenches: Example

  

































sensor
sensor

sensor
sensor

sensor
eff

sensor
eff

sensoreff
eff

sensor
eff

eff
eff

eff
eff

m

f

RRrS

R

m

f

,

0 6 axis load cell

3l

2
2l3q

effx

effy

sensorx

sensory



























































sensor
sensor

sensor
sensor

eff
eff

eff
eff

m

f

s
l

c
l

clsl

csc
l

l

scs
l

cs

sc

m

f

1000
22

0
2

00

0
2

00

000100

0000

0000

2
3

22
3

2
3333

333
2

3

333
2

33

33


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

