
Cartesian Control
• Analytical inverse kinematics can be difficult

to derive

• Inverse kinematics are not as well suited for
small differential motions

• Let’s take a look at how you use the
Jacobian to control Cartesian position

Cartesian control

Let’s control the position (not orientation) of
the three link arm end effector:

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l

   
   























23323322

2313233221233221

2313233221233221

0 clclcl

sclclclsclclc

sclclclcclcls

J



















2

1

q

q
J

y

x
























 

y

x
J

q

q








1

2

1

We can use the same strategy that we used
before:

However, this only works if the Jacobian is
square and full rank…

Cartesian control

1J

)(qFK


dx


x


q


x
 q


 dq



q


joint ctlr

joint position
sensor

1q

2q

3q

0x

0y

0z
1z

1x

1y 2z

2x2y

3z

3y

3x

1l

2l

3l

















 

y

x
J

q

q








1

2

1

• All rows/columns are
linearly independent, or

• Columns span
Cartesian space, or

• Determinant is not zero

What if you want to control the two-
dimensional position of a three-link
manipulator?

Cartesian control

x0

y0

1q

z0

2q

3q

x1
y1

y2

x2

x3

y3

1l

2l
3l

  












1112211123312211

1112211123312211

clclclclclcl

slslslslslsl
qJ

 

























3

2

1

q

q

q

qJ
y

x









 Two equations of three
variables each…

This is an under-constrained system of equations.

• multiple solutions

• there are multiple joint angle velocities that realize the
same EFF velocity.

If the Jacobian is not a square matrix (or is
not full rank), then the inverse doesn’t
exist…

• what next?

Generalized inverse

x0

y0

1q

z0

2q

3q

x1
y1

y2

x2

x3

y3

1l

2l
3l

qJx  

We are looking for a matrix such that:#J

We have:

xJq  # qJx  

Two cases:

• Underconstrained manipulator (redundant)

• Overconstrained

Generalized inverse

Generalized inverse:

• for the underconstrained manipulator: given , find any vector
that minimizes s.t.

• for the overconstrained manipulator: given , find any vector
 s.t. Is minimizedqJx  

qx

x q

qJx  

This condition must be met when is at a minimum
subject to

Psuedoinverse definition: (underconstrained)

Given a desired twist, , find a vector of
joint velocities, , that satisfies
 while minimizing

x0

y0

1q

z0

2q

3q

x1
y1

y2

x2

x3

y3

1l

2l
3lqJxd  q

qqqf T  )(

dx

Jacobian Pseudoinverse: Redundant manipulator

Use lagrange multiplier method:)()(zgzf zz  

Minimize subject to :

)(zf

0)(zg

0)(zg

)(zf

Minimize joint velocities

qqqf T 
2
1)(

0)( xqJqg 

)()(zgzf zz  

T
q qqf  )(

Jqgq )(

Jq TT 

TJq 

Minimize

Subject to

Jacobian Pseudoinverse: Redundant manipulator

So, the pseudoinverse calculates the
vector of joint velocities that
satisfies while
minimizing the squared magnitude
of joint velocity ().

• Therefore, the pseudoinverse
calculates the least-squares
solution.

TJq 

 TJJqJ 

  qJJJ T 
1

  xJJ T 
1

I won’t say why, but if is full rank, then
 is invertible

J
TJJ

TJq 

  xJJJq TT 
1

  1#  TT JJJJ

xJq  #

qJxd  

qqT 

Jacobian Pseudoinverse: Redundant manipulator

Calculating the pseudoinverse

The pseudoinverse can be calculated using two different
equations depending upon the number of rows and columns:

  1#  TT JJJJ Underconstrained case (if there are more
columns than rows (m<n))

  TT JJJJ
1#  Overconstrained case (if there are more rows

than columns (n<m))
1#  JJ If there are an equal number of rows and columns (n=m)

These equations can only be used if the Jacobian is full rank;
otherwise, use singular value decomposition (SVD):

Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

TVUJ 

TUVJ

n































00000

00000

0000

0000

0000

0000

0000

1

1

1

1

#
3

2

1











For an under-constrained matrix, is a
diagonal matrix of singular values:

mm nnnm



TUVJ 1# 

T

n

VUJ

























000000

000000

000000

000000

000000

3

2

1










Properties of the pseudoinverse

  JJ ##

   ## TT
JJ 

Moore-Penrose conditions:

JJJJ #

JJJJ 

  ## JJJJ
T 

  JJJJ
T ## 

Generalized inverse: satisfies condition 1

Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

1.

2.

3.

4.

Other useful properties of the pseudoinverse:

#J

)(qFK


dx


x


q


x
 q


 dq



q


joint ctlr

joint position
sensor

Controlling Cartesian Position

Procedure for controlling position:

1. Calculate position error:

2. Multiply by a scaling factor:

3. Multiply by the velocity Jacobian pseudoinverse:

errx

errerr xx  

errv xJq #

Controlling Cartesian Orientation

#J

)(qFK


dR

cR q


 q


 dq


q


joint ctlr

joint position
sensor

How does this strategy work for orientation control?

• Suppose you want to reach an orientation of

• Your current orientation is

• You’ve calculated a difference:

• How do you turn this difference into a desired
angular velocity to use in ?

dR

cR

#Jq 

d
T
ccd RRR 

Controlling Cartesian Orientation

#J

)(qFK


dR

cR q


q


 dq


q


joint ctlr

joint position
sensor

You can’t do this:

• Convert the difference to ZYZ Euler angles:

• Multiply the Euler angles by a scaling factor and
pretend that they are an angular velocity:  rJq #

r

r

Remember that in general:
q

r
J




 


The Analytical Jacobian

x0

y0

1q

z0

2q

3q

x1
y1

y2

x2

x3

y3

1l

2l
3l

If you really want to multiply the angular
Jacobian by the derivative of an Euler
angle, you have to convert to the
“analytical” Jacobian:

Gimbal lock: by using an analytical Jacobian instead of the angular
velocity Jacobian, you introduce the gimbal lock problems we
talked about earlier into the Jacobian – this essentially adds
“singularities” (we’ll talk more about that in a bit…)

  qJrT
q

r
A 

 




  







 J

c

ssc

scs

JrTJ AA















 


01

0

0

For ZYZ Euler
angles

x0

y0

1q

z0

2q

3q

x1
y1

y2

x2

x3

y3

1l

2l
3l

The easiest way to handle this Cartesian
orientation problem is to represent the
error in axis-angle format

qJrk  

Controlling Cartesian Orientation

Axis angle delta
rotation

Procedure for controlling rotation:

1. Represent the rotation error in axis angle format:

2. Multiply by a scaling factor:

3. Multiply by the angular velocity Jacobian
pseudoinverse:

errr

errerr rr  

errrJq 
#

Controlling Cartesian Orientation

Why does axis angle work?

• Remember Rodrigues’ formula from before:

          
 cos1sin 2  kSkSIeR kS
k

axis angle

  pSp bbb Compare this to the definition of angular velocity:

The solution to this FO diff eqn is:
 tS

t
b b

eR 
 

Therefore, the angular velocity gets integrated into an
axis angle representation

Jacobian Transpose Control

qJx  
The story of Cartesian control so far:

1.

2. xJq  #

Jacobian Transpose Control

Here’s another approach:

err
T

err xxe 2
1

 
q

x
x

q

e T
err 





T

q

e
q 






 

 
T

T
err q

x
xq 









 

 err

T

x
q

x
q


 

 err
T
v xJq 

Start with a squared position error
function (assume the poses are
represented as row vectors)

Gradient descent: take steps
proportional to in the
direction of the negative
gradient.

xxx referr Position error:



orientation error: axis angle orientation of reference pose in
the current end effector reference frame:

Jacobian Transpose Control

The same approach can be used to control orientation:

 ref
currT kJq 

ref
currk

Jacobian Transpose Control

So, evidently, this is the gradient of that

• Jacobian transpose control descends a squared
error function.

• Gradient descent always follows the steepest
gradient

err
T

err xxe 2
1 err

T xJq 

Jacobian Transpose v Pseudoinverse

What gives?

• Which is more direct? Jacobian pseudoinverse or
transpose?

TJq  #Jq or

They do different things:

• Transpose: move toward a reference pose as quickly as
possible

• One dimensional goal (squared distance meteric)

• Pseudoinverse: move along a least squares reference twist
trajectory

• Six dimensional goal (or whatever the dimension of the
relevant twist is)

The pseudoinverse moves the end effector in
a straight line path toward the goal pose
using the least squared joint velocities.

• The goal is specified in terms of the
reference twist

• Manipulator follows a straight line path in
Cartesian space

dx

The transpose moves the end effector toward
the goal position

• In general, not a straight line path in
Cartesian space

• Instead, the transpose follows the gradient
in joint space

dx

Jacobian Transpose v Pseudoinverse

Up until now, we’ve used the Jacobian in the twist equation,

Using the Jacobian for Statics

qJ 

Interestingly, you can also use the Jacobian in a statics
equation:

wJ T

Cartesian
wrench: 






m

f
w

force

moment (torque)

Joint torques

Using the Jacobian for Statics

It turns out that both wrenches and twists can be understood
in terms of a representation of displacement known as a
screw.

• Therefore, you can calculate work by integrating the dot
product:

  















  m

fv
mfvW

T




qW T  

Work in Cartesian
space

Work in joint space

Conservation of energy: 















  m

fv
q

T

T


 

Using the Jacobian for Statics

Incremental work (virtual work)




















v

m

f
q

T

T 

qJ
m

f
q

T

T  









J
m

f
T

T




















m

f
J T

wJ T

wJ T qJ vs

Wrench-twist duality:

Note that twist can be represented in different
reference frames:














b

b
b v














k

k
k v

12  bb 

Consider two reference frames attached
to the same rigid body:

1T
b

2T
b

12112 rvv bbb  

Twist: converting between reference frames

Twist: converting between reference frames

12  bb  1T
b

2T
b

12112 rvv bbb  

 















 










1

112

2

2

0  b

b

b

b v

I

rSIv

 























 

















 1

1

1

112

2

2
2

2

0

0

00

0 v

R

R

I

rSI

R

Rv
b

b

Tb

Tb

 















 









 1

1

1
2

12
1

1
2

1
2

2

2

0

v

R

rSRRv

Twist in frame 2 Twist in frame 1

Wrench can also be represented in different reference
frames:










m

f
w

b

b
b











m

f
w

k

k
k

1T
b

2T
b

Wrench: converting between reference frames

Use the virtual work argument to derive
the relationship:

1T
b

2T
b

Wrench: converting between reference frames



































1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2


v

m

fv

m

f
TT

 
































 









1
1

1
1

1
1

1
1

1
1

1
1

1
2

12
1

1
2

1
2

2
2

2
2

0 
v

m

fv

R

rSRR

m

f
TT

  TT

m

f

R

rSRR

m

f
















 









1
1

1
1

1
2

12
1

1
2

1
2

2
2

2
2

0

  

























2
2

2
2

2
1

2
1

12
1

2
1

1
1

1
1 0

m

f

RRrS

R

m

f

Use a 6-axis load cell bisecting the
second link to calculate wrenches at
the end effector (the tip of the last link)

Converting wrenches: Example

6 axis load cell

3l

2
2l3q

effy


















100

0

0

33

33

cs

sc

Rsensor
eff





















 



0
2

2

3
2

3
2

3

s
l

c
l

l

rsensor
eff

effx

sensory

sensorx

Converting wrenches: Example

  

































sensor
sensor

sensor
sensor

sensor
eff

sensor
eff

sensoreff
eff

sensor
eff

eff
eff

eff
eff

m

f

RRrS

R

m

f

,

0 6 axis load cell

3l

2
2l3q

effx

effy

sensorx

sensory



























































sensor
sensor

sensor
sensor

eff
eff

eff
eff

m

f

s
l

c
l

clsl

csc
l

l

scs
l

cs

sc

m

f

1000
22

0
2

00

0
2

00

000100

0000

0000

2
3

22
3

2
3333

333
2

3

333
2

33

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

