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Decision Tree Example

Shape

Color

Yes No Yes

Size No

Yes No

circle square triangle

red blue green large small

Interesting?

Interesting=Yes � ((Shape=circle)^((Color=red)V(Color=green)))

V ((Shape=square)^(Size=large))
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Inducing Decision Trees from Data
• Suppose we have a set of training data and 
want to construct a decision tree consistent 
with that data

• One trivial way: Construct a tree that 
essentially just reproduces the training data, 
with one path to a leaf for each example
• no hope of generalizing

• Better way: ID3 algorithm
• tries to construct more compact trees

• uses information-theoretic ideas to create tree 
recursively 
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Inducing a decision tree: example
• Suppose our tree is to determine whether 
it’s a good day to play tennis based on 
attributes representing weather conditions

• Input attributes

• Target attribute is PlayTennis, with values 
Yes or No

Attribute Possible Values

Outlook Sunny, Overcast, Rain

Temperature Hot, Mild, Cool

Humidity High, Normal

Wind Strong, Weak
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Training Data
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Essential Idea

• Main question: Which attribute test should 
be placed at the root?

• In this example, 4 possibilities

• Once we have an answer to this question, 
apply the same idea recursively to the 
resulting subtrees

• Base case: all data in a subtree give rise to 
the same value for the target attribute

• In this case, make that subtree a leaf with the 
appropriate label
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• For example, suppose we decided that Wind 
should be used as the root

• Resulting split of the data looks like this:

• Is this a good test to split on?  Or would one 
of the other three attributes be better?

Wind

D2, D6, D7, D11, D12, D14               D1, D3, D4, D5, D8, D9, D10, D13

PlayTennis: 3 Yes, 3 No                    PlayTennis: 6 Yes, 2 No                                    

Strong                        Weak
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Digression: Information & Entropy
• Suppose we want to encode and transmit a 
long sequence of symbols from the set
{a, c, e, g} drawn randomly according to 
the following probability distribution D:

• Since there are 4 symbols, one possibility is 
to use 2 bits per symbol

• In fact, it’s possible to use 1.75 bits per 
symbol, on average

• Can you see how?

Symbol a c e g

Probability 1/8 1/8 1/4 1/2
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• Here’s one way:

• Average number of bits per symbol
= ⅛ * 3 + ⅛ * 3 + ¼ * 2 + ½ * 1
= 1.75

• Information theory: Optimal length code 
assigns log2 1/p = - log2 p bits to a message 
having probability p

Symbol Encoding

a 000

c 001

e 01

g 1
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Entropy
• Given a distribution D over a finite set, 
where <p1, p2, ..., pn> are the 
corresponding probabilities, define the 
entropy of D by

H(D) = - ∑i pi log2 pi

• For example, the entropy of the distribution 
we just examined, <⅛, ⅛, ¼, ½>, is 1.75 
(bits)

• Also called information

• In general, entropy is higher the closer the 
distribution is to being uniform
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• Suppose there are just 2 values, so the 
distribution has the form <p, 1-p>

• Here’s what the entropy looks like as a 
function of p:
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Back to decision trees - almost

• Think of the input attribute vector as 
revealing some information about the value 
of the target attribute

• The input attributes are tested sequentially, 
so we’d like each test to reveal the maximal 
amount of information possible about the 
target attribute value

• To formalize this, we need the notion of 
conditional entropy

This encourages shallower 
trees, we hope
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• Return to our symbol encoding example:

• Suppose we’re given the identity of the next 
symbol received in 2 stages:

• we’re first told that the symbol is a vowel or 
consonant

• then we learn its actual identity

• We’ll analyze this 2 different ways

Symbol a c e g

Probability 1/8 1/8 1/4 1/2
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• First consider the second stage – conveying 
the identity of the symbol given prior 
knowledge that it’s a vowel or consonant

• For this we use the conditional distribution 
of D given that the symbol is a vowel

and the conditional distribution of D given 
that the symbol is a consonant

Symbol a e

Probability 1/3 2/3

Symbol c g

Probability 1/5 4/5
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• We can compute the entropy of each of 
these conditional distributions:

H(D|Vowel) = - 1/3 log2 1/3 – 2/3 log2 2/3

= 0.918

H(D|Consonant)

= - 1/5 log2 1/5 – 4/5 log2 4/5

= 0.722

• We then compute the expected value of this  
as 3/8 * 0.918 + 5/8 * 0.722 = 0.796
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• H(D|Vowel) = 0.918 represents the expected 
number of bits to convey the actual identity of the 
symbol given that it’s a vowel

• H(D|Consonant) = 0.722 represents the expected 
number of bits to convey the actual identity of the 
symbol given that it’s a consonant

• Then the weighted average 0.796 is the expected 
number of bits to convey the actual identity of the 
symbol given whichever is true about it – that it’s 
a vowel or that it’s a consonant

Decision Trees: Slide 17

Information Gain

• Thus while it requires an average of 1.75 
bits to convey the identity of each symbol, 
once it’s known whether it’s a vowel or a 
consonant, it only requires 0.796 bits, on 
average, to convey its actual identity

• The difference 1.75 – 0.796 = 0.954 is the 
number of bits of information that are 
gained, on average, by knowing whether 
the symbol is a vowel or a consonant

• called information gain
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• The way we computed this corresponds to 
the way we’ll apply this to identify good split 
nodes in decision trees

• But it’s instructive to see another way:  
Consider the first stage – specifying whether 
vowel or consonant

• The probabilities look like this:

• The entropy of this is
- 3/8 * log2 3/8 – 5/8 * log2 5/8 = 0.954

Vowel Consonant

Probability 3/8 5/8
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Now back to decision trees for real

• We’ll illustrate using our PlayTennis data

• The key idea will be to select as the test for 
the root of each subtree the one that gives 
maximum information gain for predicting 
the target attribute value

• Since we don’t know the actual probabilities 
involved, we instead use the obvious 
frequency estimates from the training data

• Here’s our training data again:
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Training Data
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Which test at the root?
• We can place at the root of the tree a test 
for the values of one of the 4 possible 
attributes Outlook, Temperature, Humidity, 
or Wind

• Need to consider each in turn

• But first let’s compute the entropy of the 
overall distribution of the target PlayTennis 
values: There are 5 No’s and 9 Yes’s, so the 
entropy is
- 5/14 * log2 5/14 – 9/14 * log2 9/14
= 0.940
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Wind

D2, D6, D7, D11, D12, D14               D1, D3, D4, D5, D8, D9, D10, D13

PlayTennis: 3 Yes, 3 No                    PlayTennis: 6 Yes, 2 No                                    

Strong                        Weak

H(PlayTennis|Wind=Strong) = - 3/6 * log2 3/6 - 3/6 * log2 3/6 = 1

H(PlayTennis|Wind=Weak) = - 6/8 * log2 6/8 - 2/8 * log2 2/8 = 0.811

So the expected value is 6/14 * 1 + 8/14 * 0.811 = 0.892

Therefore, the information gain after the Wind test is applied is

0.940 – 0.892 = 0.048
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• Doing this for all 4 possible attribute tests 
yields

• Therefore the root should test for the value 
of Outlook

Attribute tested at root Information Gain

Outlook 0.246

Temperature 0.029

Humidity 0.151

Wind 0.048
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Partially formed tree
Entropy here is

-2/5 log2 2/5 – 3/5 log2 3/5 

= 0.971

This node is a leaf since all 
its data agree on the 

same valueCorrect test for here among 
Temperature, Humidity, and Wind 

is the one giving highest 
information gain with respect to 
these 5 examples only
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Extensions

• Continuous input attributes

• Sort data on any such attribute and try to 
identify a high information gain threshold, 
forming binary split

• Continuous target attribute

• Called a regression tree – won’t deal with it here

• Avoiding overfitting

• Use separate validation set

• Use tree post-pruning based on statistical tests

More on this later
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Extensions (continued)
• Inconsistent training data (same attribute 
vector classified more than one way)
• Store more information in each leaf

• Missing values of some attributes in training 
data
• Won’t deal with this here

• Missing values of some attributes in a new 
attribute vector to be classified (or missing 
branches in the induced tree)
• Send the new vector down multiple branches 
corresponding to all values of that attribute, 
then let all leaves reached contribute to result


