Cross-validation for detecting and preventing overfitting

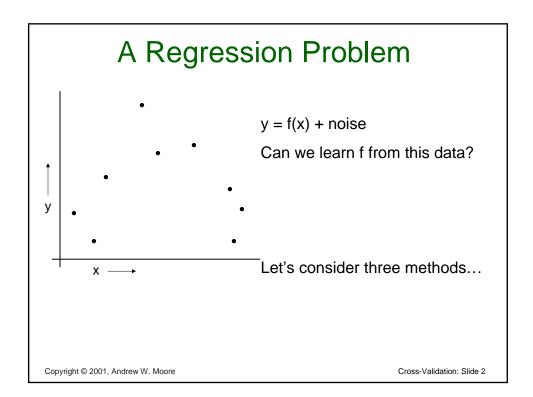
Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/-awm/tutorials. Comments and corrections gratefully received.

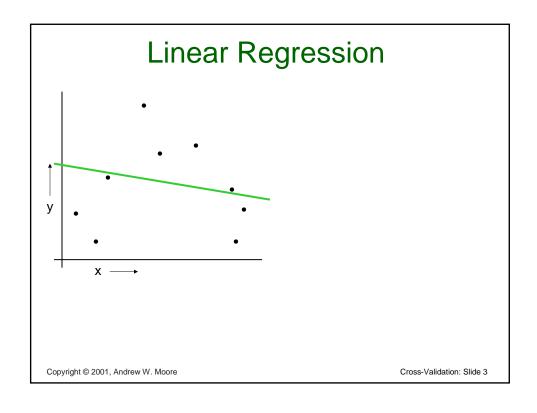
Andrew W. Moore
Associate Professor
School of Computer Science
Carnegie Mellon University

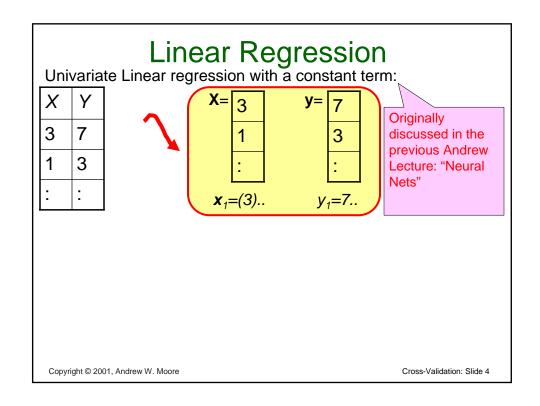
www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

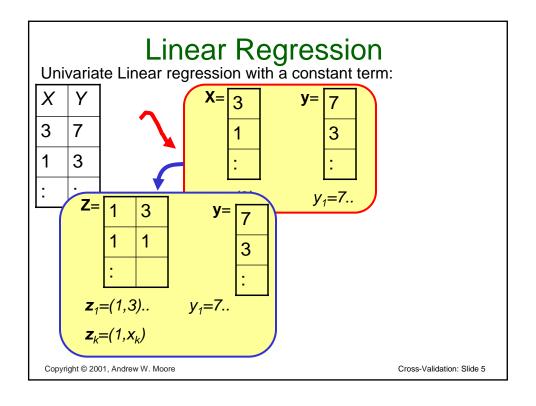
Copyright © 2001, Andrew W. Moore

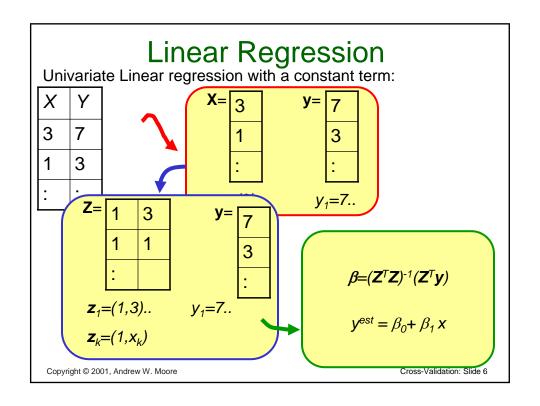
Oct 15th, 2001

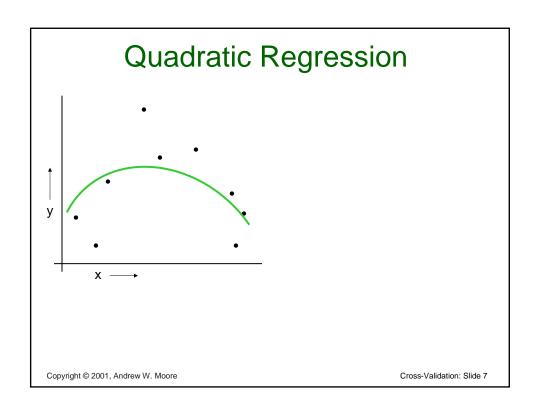


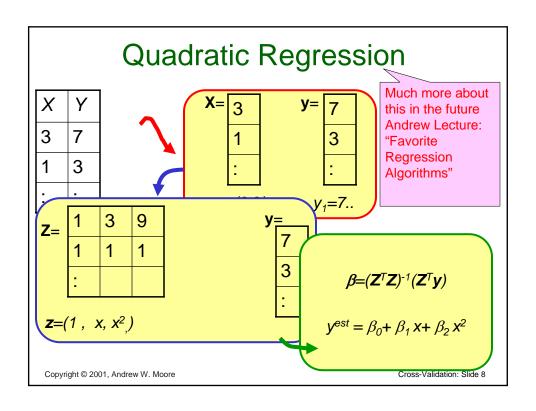


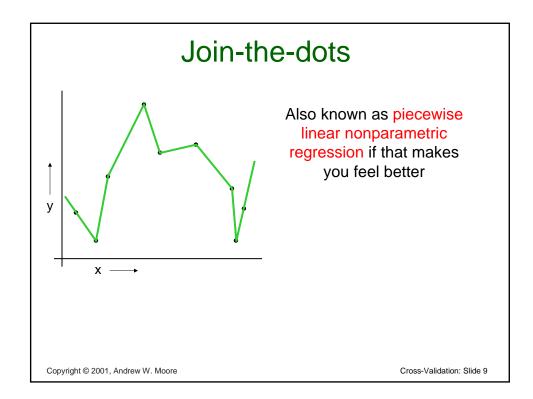


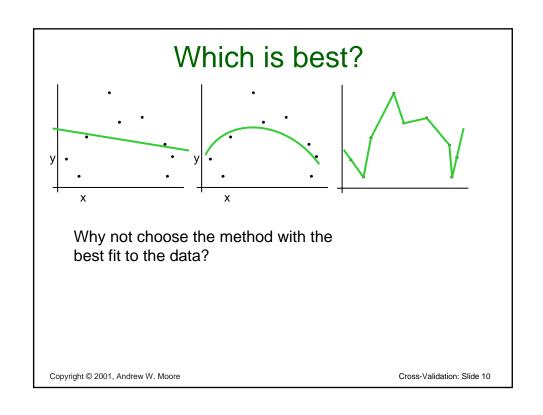


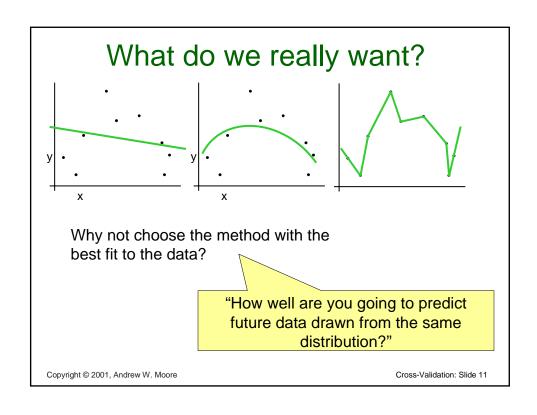


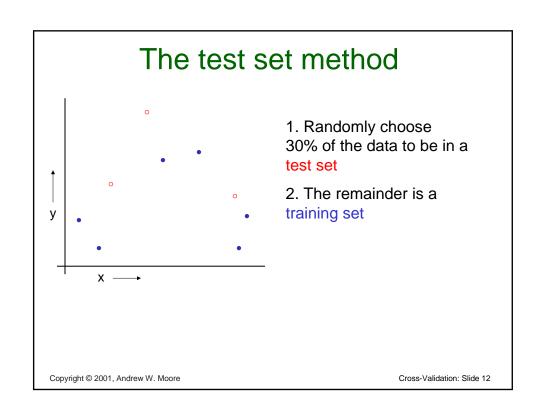


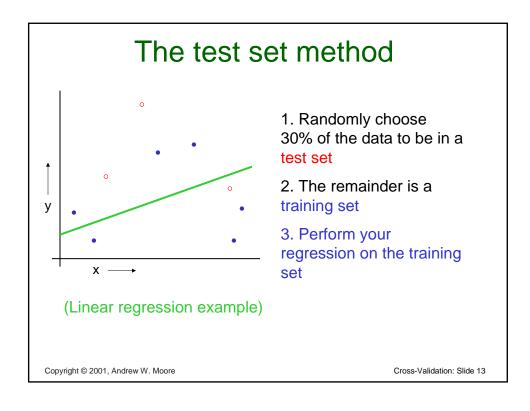


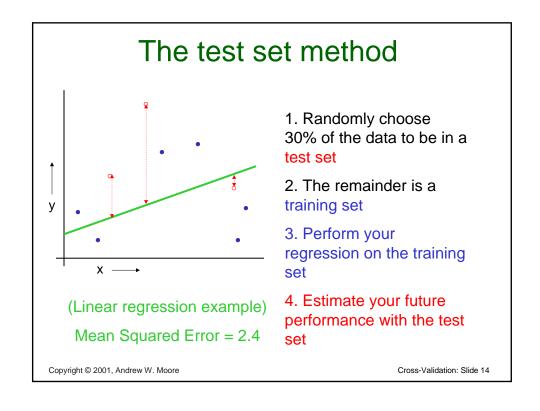


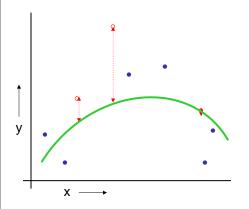












30% of the data to be in a test set

1. Randomly choose

- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

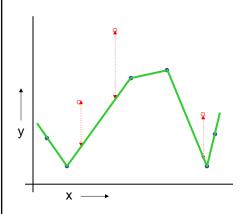
Copyright © 2001, Andrew W. Moore

(Quadratic regression example)

Mean Squared Error = 0.9

Cross-Validation: Slide 15

The test set method



(Join the dots example)

Mean Squared Error = 2.2

Copyright © 2001, Andrew W. Moore

- 1. Randomly choose 30% of the data to be in a test set
- 2. The remainder is a training set
- 3. Perform your regression on the training set
- 4. Estimate your future performance with the test set

The test set method

Good news:

- Very very simple
- •Can then simply choose the method with the best test-set score

Bad news:

•What's the downside?

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 17

The test set method

Good news:

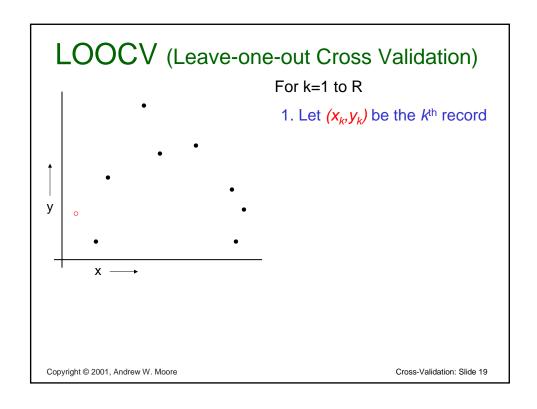
- Very very simple
- •Can then simply choose the method with the best test-set score

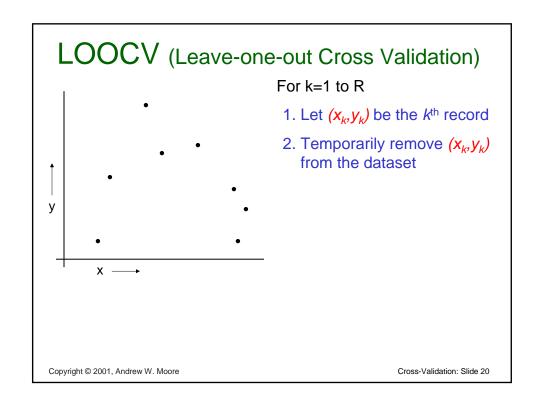
Bad news:

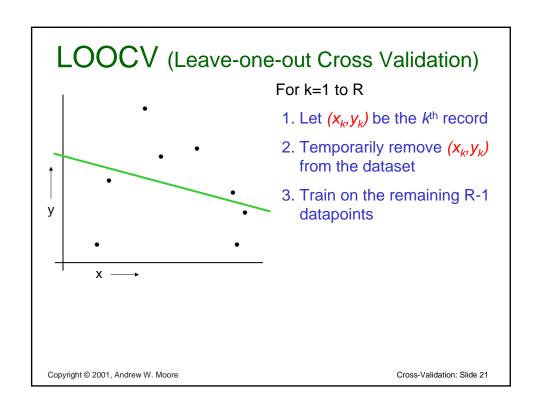
- •Wastes data: we get an estimate of the best method to apply to 30% less data
- •If we don't have much data, our test-set might just be lucky or unlucky

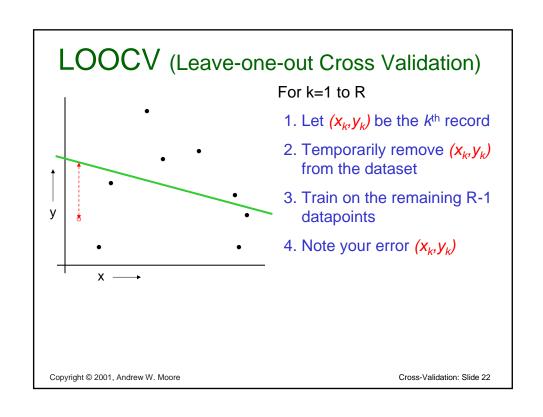
We say the "test-set estimator of performance has high variance"

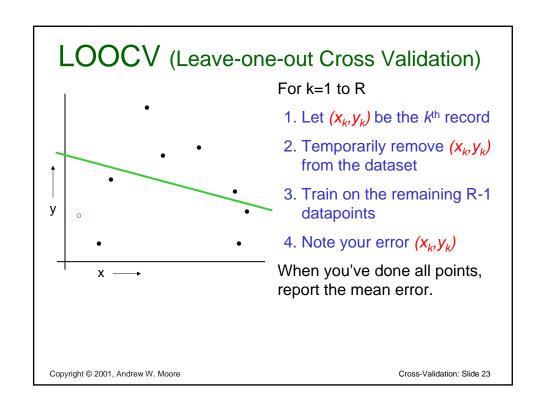
Copyright © 2001, Andrew W. Moore

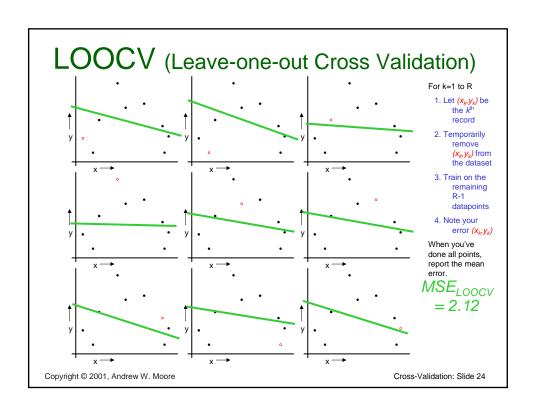


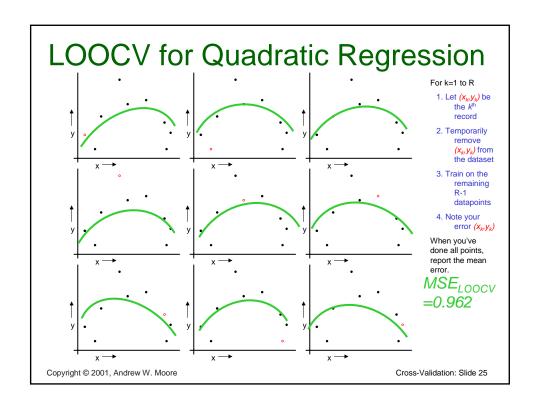


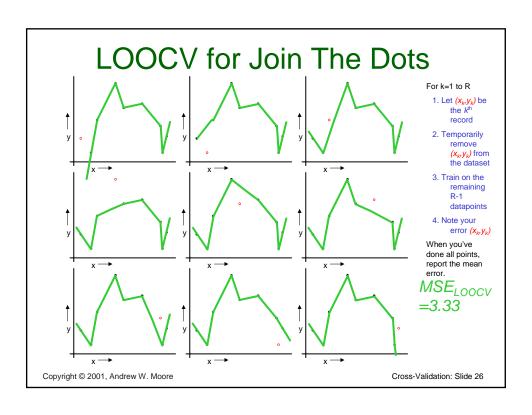










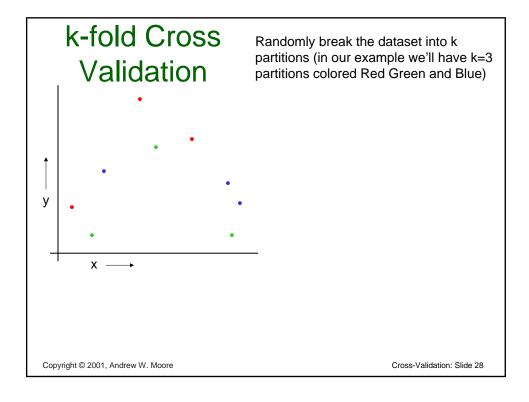


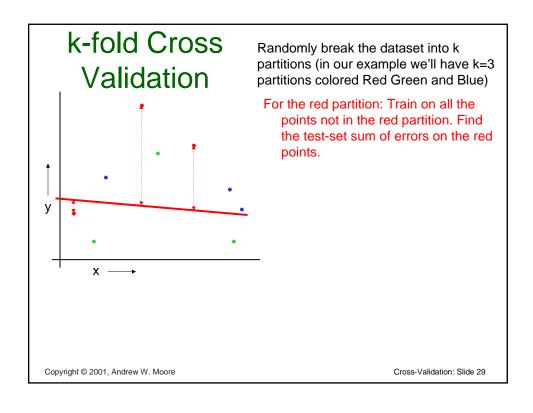
Which kind of Cross Validation?

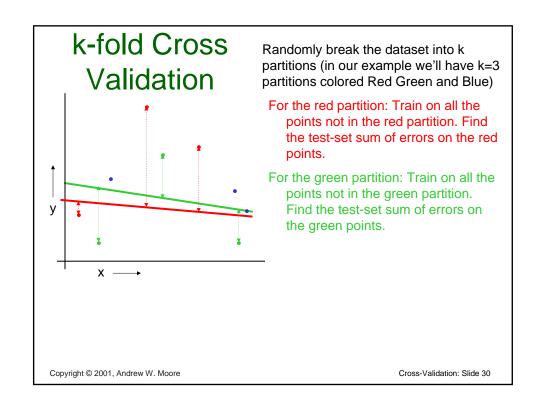
	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data

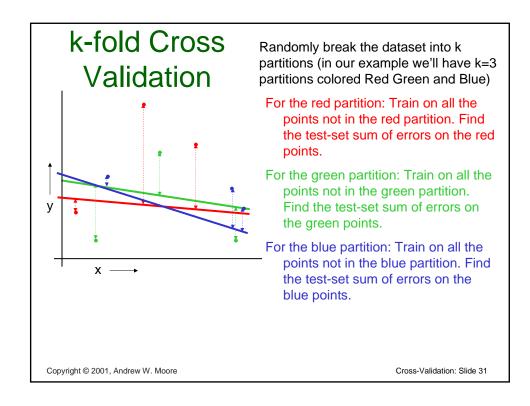
..can we get the best of both worlds?

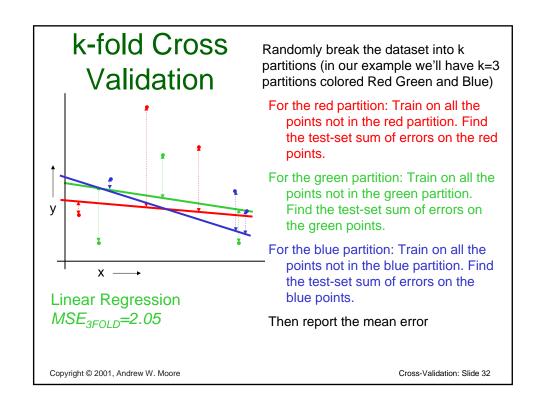
Copyright © 2001, Andrew W. Moore

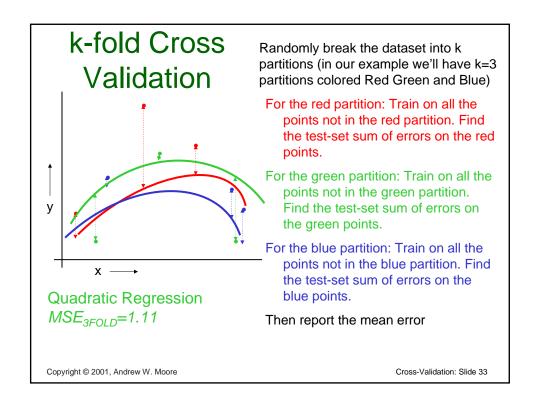


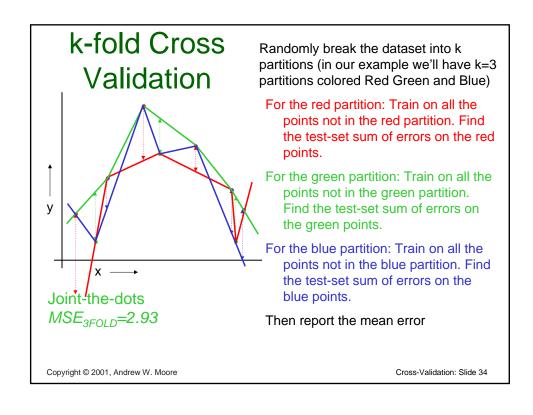












Which kind of Cross Validation?					
	Downside	Upside			
Test-set	Variance: unreliable estimate of future performance	Cheap			
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data			
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.			
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set			
R-fold	Identical to Leave-one-out				
Copyright © 2001, Andrew W. Moore Cross-Validation: Slide 35					

	Downside	Upside	
Test-set	Variance: unreliable estimate of future performance	Cheap	
Leave- one-out	Evnoncivo	But note: One of Andrew's joys in life is algorithmic tricks for	
10-fold	Wastes 10% of the data 10 times more expensive than testset		
3-fold	Wastier than 10-fold. Expensivier than testset	Slightly better than test- set	
R-fold	Identical to Leave-one-out		

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

i	f_i	TRAINERR	10-FOLD-CV-ERR	Choice
1	f_1			
2	f_2			
3	f_3			\boxtimes
4	f_4			
5	f_5			
6	f_6	I		

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 37

Alternatives to CV-based model selection

- Model selection methods:
 - 1. Cross-validation
 - 2. AIC (Akaike Information Criterion)
 - 3. BIC (Bayesian Information Criterion)
 - 4. VC-dimension (Vapnik-Chervonenkis Dimension)

Only directly applicable to choosing classifiers

Described in a future Andrew Lecture

Copyright © 2001, Andrew W. Moore

Which model selection method is best?

- 1. (CV) Cross-validation
- 2. AIC (Akaike Information Criterion)
- 3. BIC (Bayesian Information Criterion)
- 4. (SRMVC) Structural Risk Minimize with VC-dimension
- AIC, BIC and SRMVC advantage: you only need the training error.
- CV error might have more variance
- SRMVC is wildly conservative
- Asymptotically AIC and Leave-one-out CV should be the same
- Asymptotically BIC and carefully chosen k-fold should be same
- You want BIC you want the best structure instead of the best predictor (e.g. for clustering or Bayes Net structure finding)
- Many alternatives---including proper Bayesian approaches.
- It's an emotional issue.

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 39

Other Cross-validation issues

- Can do "leave all pairs out" or "leave-allntuples-out" if feeling resourceful.
- Some folks do k-folds in which each fold is an independently-chosen subset of the data
- Do you know what AIC and BIC are?
 If so...
 - LOOCV behaves like AIC asymptotically.
 - k-fold behaves like BIC if you choose k carefully
 If not...
 - Nyardely nyardely nyoo nyoo

Copyright © 2001, Andrew W. Moore

Cross-Validation for regression

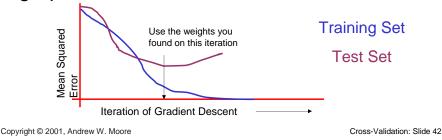
- Choosing the number of hidden units in a neural net
- Feature selection (see later)
- Choosing a polynomial degree
- Choosing which regressor to use

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 41

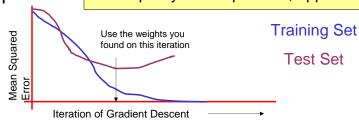
Supervising Gradient Descent

- This is a weird but common use of Test-set validation
- Suppose you have a neural net with too many hidden units. It will overfit.
- As gradient descent progresses, maintain a graph of MSE-testset-error vs. Iteration



Supervising Gradient Descent

- This is a weird but common use of Test-set validation
- Suppose you have real net with too many hidde Relies on an intuition that a not-fully-minimized set of weights is somewhat like
- As gradient having fewer parameters.
 graph of MS Works pretty well in practice, apparently



Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 43

Cross-validation for classification

 Instead of computing the sum squared errors on a test set, you should compute...

Copyright © 2001, Andrew W. Moore

Cross-validation for classification

 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a testset.

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 45

Cross-validation for classification

• Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a testset.

• But there's a more sensitive alternative:

Compute

log P(all test outputs|all test inputs, your model)

Copyright © 2001, Andrew W. Moore

Cross-Validation for classification

- Choosing the pruning parameter for decision trees
- Feature selection (see later)
- What kind of Gaussian to use in a Gaussianbased Bayes Classifier
- Choosing which classifier to use

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 47

Cross-Validation for density estimation

 Compute the sum of log-likelihoods of test points

Example uses:

- Choosing what kind of Gaussian assumption to use
- Choose the density estimator
- NOT Feature selection (testset density will almost always look better with fewer features)

Copyright © 2001, Andrew W. Moore

Feature Selection

- Suppose you have a learning algorithm LA and a set of input attributes { X₁ , X₂ .. X_m }
- You expect that LA will only find some subset of the attributes useful.
- Question: How can we use cross-validation to find a useful subset?
- Four ideas:
 - Forward selection
 - Backward elimination
 - Hill Climbing
 - Stochastic search (Simulated Annealing or GAs)

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 49

Another fun area in which

Andrew has spent a lot of his

wild youth

Very serious warning

- Intensive use of cross validation can overfit.
- How?

What can be done about it?

Copyright © 2001, Andrew W. Moore

Very serious warning

- Intensive use of cross validation can overfit.
- How?
 - Imagine a dataset with 50 records and 1000 attributes.
 - You try 1000 linear regression models, each one using one of the attributes.
- What can be done about it?

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 51

Very serious warning

- Intensive use of cross validation can overfit.
- How?
 - Imagine a dataset with 50 records and 1000 attributes.
 - You try 1000 linear regression models, each one using one of the attributes.
 - The best of those 1000 looks good!
- What can be done about it?

Copyright © 2001, Andrew W. Moore

Very serious warning

- Intensive use of cross validation can overfit.
- How?
 - Imagine a dataset with 50 records and 1000 attributes.
 - You try 1000 linear regression models, each one using one of the attributes.
 - The best of those 1000 looks good!
 - But you realize it would have looked good even if the output had been purely random!
- What can be done about it?
 - Hold out an additional testset before doing any model selection. Check the best model performs well even on the additional testset.

Copyright © 2001, Andrew W. Moore

Cross-Validation: Slide 53

What you should know

- Why you can't use "training-set-error" to estimate the quality of your learning algorithm on your data.
- Why you can't use "training set error" to choose the learning algorithm
- Test-set cross-validation
- Leave-one-out cross-validation
- k-fold cross-validation
- Feature selection methods
- CV for classification, regression & densities

Copyright © 2001, Andrew W. Moore