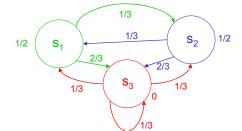
Hidden Markov Models

Ronald J. Williams CSG220 Spring 2007

Contains several slides adapted from an Andrew Moore tutorial on this topic and a few figures from Russell & Norvig's *AIMA* site and Alpaydin's *Introduction to Machine Learning* site.

A Simple Markov Chain



Numbers at nodes represent probability of starting at the corresponding state.

Numbers on arcs represent transition probabilities.

At each time step, t = 1, 2, ... a new state is selected randomly according to the distribution at the current state.

Let X_t be a random variable for the state at time step t.

Let x_t represent the actual value of the state at time t. In this example, x_t can be s_1 , s_2 , or s_3 .

Markov Property

- For any t, X_{t+1} is conditionally independent of $\{X_{t-1},\,X_{t-2},\,\dots\,X_1\}$ given X_t .
- · In other words:

$$P(X_{t+1} = s_i | X_t = s_i) = P(X_{t+1} = s_i | X_t = s_i, any earlier history)$$

 Question: What would be the best Bayes Net structure to represent the Joint Distribution of (X₁, X₂, ..., X_{t-1}, X_t, ...)?

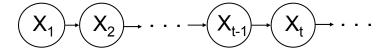
Hidden Markov Models: Slide 3

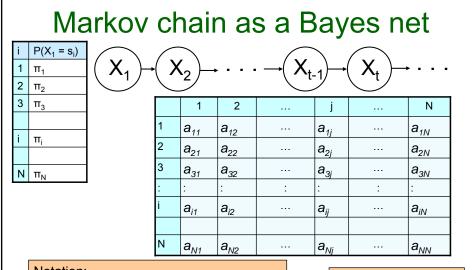
Markov Property

- For any t, X_{t+1} is conditionally independent of $\{X_{t-1},\,X_{t-2},\,\dots\,X_1\}$ given X_t .
- · In other words:

$$P(X_{t+1} = s_i | X_t = s_i) = P(X_{t+1} = s_i | X_t = s_i, any earlier history)$$

- Question: What would be the best Bayes Net structure to represent the Joint Distribution of (X₁, X₂, ..., X_{t-1}, X_t, ...)?
- Answer:





Notation: $a_{ij} = P(X_{t+1} = s_j | X_t = s_i)$ $\pi_i = P(X_1 = s_i)$

Same CPT at every node except X₁

Hidden Markov Models: Slide 5

Markov Chain: Formal Definition

A Markov chain is a 3-tuple consisting of

- a set of N possible states $\{s_1, s_2, ..., s_N\}$
- $\{\pi_1, \, \pi_2, \, ... \, \pi_N\}$ The starting state probabilities $\pi_i = P(X_1 = s_i)$

The state transition probabilities $a_{ij} = P(X_{t+1} = s_j | X_t = s_i)$

Computing stuff in Markov chains

- Some notation and assumptions
 - Assume time t runs from 1 to T
 - Recall that X_t is the r.v. representing the state at time t and x_t denotes the actual value
 - Use $X_{t1:t2}$ and $x_{t1:t2}$ as shorthand for $(X_{t1},\,X_{t1+1},\,...,\,X_{t2})$ and $(x_{t1},\,x_{t1+1},\,...\,\,x_{t2})$, respectively
 - Use notation like P(x_t) as shorthand for P(X_t=x_t)

Hidden Markov Models: Slide 7

What is $P(X_t = s_i)$? 1st attempt

Step 1: Work out how to compute $P(x_{1:t})$ for any state sequence $x_{1:t}$

$$P(x_{1:t}) = P(x_{t} | x_{1:t-1})P(x_{1:t-1})$$

$$= P(x_{t} | x_{1:t-1})P(x_{t-1} | x_{1:t-2})P(x_{1:t-2})$$

$$\vdots$$

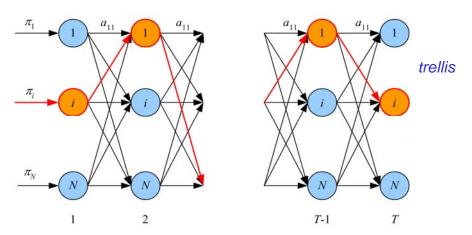
$$= P(x_{t} | x_{1:t-1})P(x_{t-1} | x_{1:t-2})\cdots P(x_{2} | x_{1:1})P(x_{1:1})$$

$$= P(x_{t} | x_{t-1})P(x_{t-1} | x_{t-2})\cdots P(x_{2} | x_{1})P(x_{1})$$

Step 2: Use this knowledge to get $P(X_t = s_i)$

P(
$$X_t = s_i$$
) =
$$\sum_{\text{sequences for which } x_t = s_i} P(x_{1:t})$$
 exponential in t

State sequence as a path



Exponentially many paths, but at each time step only goes through exactly one of the N states

Hidden Markov Models: Slide 9

What is $P(X_t = s_i)$? Clever approach

• For each state s_i , define

$$p_t(i) = P(X_t = s_i)$$

· Express inductively

$$\forall i \quad p_1(i) \equiv P(X_1 = s_i) = \pi_i$$

$$\forall j \quad p_{t+1}(j) \equiv P(X_{t+1} = s_j)$$

$$= \sum_{i=1}^{N} P(X_{t+1} = s_j | X_t = s_i) P(X_t = s_i)$$

$$= \sum_{i=1}^{N} a_{ij} p_t(i)$$

What is $P(X_t = s_i)$? Clever approach

• For each state s_i, define

$$p_t(i) = P(X_t = s_i)$$

Express inductively

$$\forall i \quad p_1(i) \equiv P(X_1 = s_i) = \pi_i$$

$$\forall j \quad p_{t+1}(j) \equiv P(X_{t+1} = s_j)$$

$$= \sum_{i=1}^{N} P(X_{t+1} = s_j \mid X_t = s_i)$$

$$= \sum_{i=1}^{N} a_{ij} p_t(i)$$

time step

state index		1	2		Т
	1				
	2				
	:				
	Ν				

- · Computation is simple.
- Just fill in this table one column at a time, from left to right
- Cells in this table correspond to nodes in the trellis

Hidden Markov Models: Slide 11

What is $P(X_t = s_i)$? Clever approach

• For each state s_i , define

$$p_t(i) = P(X_t = s_i)$$

· Express inductively

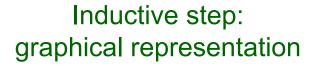
$$\forall i \quad p_1(i) \equiv P(X_1 = s_i) = \pi_i$$

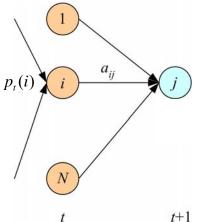
$$\forall j \quad p_{t+1}(j) \equiv P(X_{t+1} = s_j)$$

$$= \sum_{i=1}^{N} P(X_{t+1} = s_j \mid X_t = s_i) P(X_t = s_i)$$

$$= \sum_{i=1}^{N} a_{ij} p_t(i)$$

- Cost of computing p_t(i) for all states s_i is now O(TN²)
- The first way was O(N^T)
- · This was a simple example
- It was meant to warm you up to this trick, called *Dynamic Programming*, because HMM computations involve many tricks just like this.





$$p_{t+1}(j) = \sum_{i=1}^{N} a_{ij} p_{t}(i)$$

Compare this with similar depictions of updates we'll use in HMMs

Hidden Markov Models: Slide 13

Hidden State

- Given a Markov model of a process, computation of various quantities of interest (e.g., probabilities) is straightforward if the state is observable – use techniques like the one just described.
- More realistic: assume the true state is not observable only have observations that depend on, but do not fully determine, the actual states.
- Examples
 - · Robot localization
 - state = actual location
 - · observations = (noisy) sensor readings
 - · Speech recognition
 - state sequence => word
 - · observations = acoustic signal
- In this situation, we say the state is hidden
- Model this using a Hidden Markov Model (HMM)

HMMs

- An HMM is just a Markov chain augmented with
 - a set of M possible observations {o₁, o₂, ..., o_M}
 - for each state s₁, s₂, ..., s_N a distribution over possible observations that might be sensed in that state
- We'll let Z_t be the r.v. for the observation that occurs at time t (with z_t representing the actual observation)
- In addition, we'll assume that the observation at time t depends only on the state at time t, in the sense about to be described

Hidden Markov Models: Slide 15

Markov Property of Observations

- For any t, Z_t is conditionally independent of $\{X_{t-1}, X_{t-2}, \dots X_1, Z_{t-1}, Z_{t-2}, \dots, Z_1\}$ given X_t .
- · In other words:

$$P(Z_t = o_i | X_t = s_i) = P(Z_t = o_i | X_t = s_i, any earlier history)$$

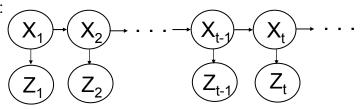
 Question: What would be the best Bayes Net structure to represent the Joint Distribution of (X₁, Z₁, X₂, Z₂, ..., X_{t-1}, Z_{t-1}, X_t, Z_t, ...)?

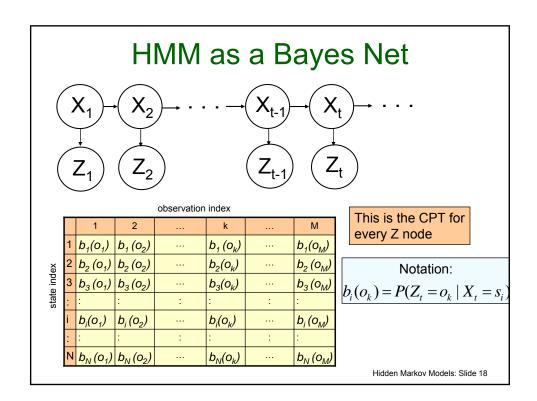
Markov Property of Observations

- For any t, Z_t is conditionally independent of $\{X_{t-1},\,X_{t-2},\,\dots\,X_1,\,Z_{t-1},\,Z_{t-2},\,\dots,\,Z_1\}$ given X_t .
- · In other words:

$$P(Z_t = o_i | X_t = s_i) = P(Z_t = o_i | X_t = s_i, any earlier history)$$

- Question: What would be the best Bayes Net structure to represent the Joint Distribution of (X₁, Z₁, X₂, Z₂, ..., X_{t-1}, Z_{t-1}, X_t, Z_t, ...)?
- Answer:





Are HMMs Useful?

You bet !!

- Robot planning & sensing under uncertainty (e.g. Reid Simmons / Sebastian Thrun / Sven Koenig)
- Robot learning control (e.g. Yangsheng Xu's work)
- Speech Recognition/Understanding Phones \rightarrow Words, Signal \rightarrow phones
- Human Genome Project
 Complicated stuff your lecturer knows nothing about.
- · Consumer decision modeling
- Economics & Finance.

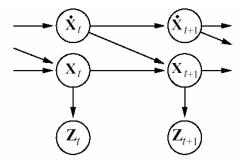
Plus at least 5 other things I haven't thought of.

Hidden Markov Models: Slide 19

Dynamic Bayes Nets

- An HMM is actually a special case of a more general concept: Dynamic Bayes Net (DBN)
- Can decompose into multiple state variables and multiple observation variables at each time slice, with only direct influences represented explicitly
- (1st order) Markov property: nodes in any time slice have arcs only from nodes in their own or the immediately preceding time slice
- Higher-order Markov models also easily represented in this framework

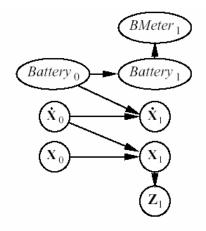
DBN Example



Linear dynamical system with position sensors E.g., target tracking

Hidden Markov Models: Slide 21

Another DBN Example



Modeling a robot with position sensors and a battery charge meter

Back to HMMs ...

Summary of our HMM notation:

- X_t = state at time t (r.v.)
- Z_t = observation at time t (r.v.)
- $V_{t_1:t_2} = (V_{t_1}, V_{t_1+1}, ..., V_{t_2})$ for any time-indexed r.v. V
- Possible states = {s₁, s₂, ..., s_N}
- Possible observations = {o₁, o₂, ..., o_M}
- v_t = actual value of r.v. V at time step t
- $v_{t_1:t_2} = (v_{t_1}, v_{t_1+1}, ..., v_{t_2}) =$ sequence of actual values of r.v. V from time steps t_1 through t_2
- Convenient shorthand: E.g., $P(x_{1:t} | z_{1:t})$ means $P(X_{1:t} = x_{1:t} | Z_{1:t} = z_{1:t})$
- T = final time step

Hidden Markov Models: Slide 23

HMM: Formal Definition

An HMM λ is a 5-tuple consisting of

- a set of N possible states {s₁, s₂, ..., s_N}
- a set of M possible observations {o₁, o₂, ..., o_M}
- $\{\pi_1, \pi_2, ... \pi_N\}$ The starting state probabilities

$$\pi_{i} = P(X_{1} = s_{i})$$
• a_{11} a_{22} ... a_{1N}

$$a_{21}$$
 a_{22} ... a_{2N}

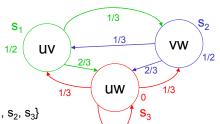
$$\vdots$$

$$\vdots$$

The state transition probabilities $a_{ij} = P(X_{t+1}=s_j | X_t=s_i)$

The observation probabilities $b_i(o_k) = P(Z_t=o_k \mid X_t=s_i)$

Here's an HMM



Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

State set $\{s_1, s_2, s_3\}$

Observation set {u, v, w}

$$\pi_1 = 1/2$$

$$\pi_2 = 1/2$$

$$\pi_{3} = 0$$

$$a_{11} = 0$$

$$a_{12} = 1/3$$

$$a_{13} = 2/3$$

$$a_{12} = 1/3$$

 $a_{13} = 1/3$

$$a_{22} = 0$$

 $a_{32} = 1/3$

$$a_{13} = 2/3$$

 $a_{13} = 1/3$

$$b_1(u) = 1/2$$

$$b_1(v) = 1/2$$

 $b_2(v) = 1/2$

$$b_1(w) = 0$$

$$b_2(u) = 0$$

 $b_3(u) = 1/2$

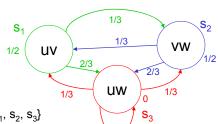
$$b_3(v) = 0$$

$$b_2(w) = 1/2$$

 $b_3(w) = 1/2$

Hidden Markov Models: Slide 25

Here's an HMM



Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

Let's generate a sequence of observations:

50-50 choice

between s₁ and

 S_2

State set $\{s_1, s_2, s_3\}$ Observation set {u, v, w}

$$\pi_1 = 1/2$$

$$\pi_2 = 1/2$$

$$\pi_3 = 0$$

$$a_{11} = 0$$

 $a_{12} = 1/3$

$$a_{12} = 1/3$$

 $a_{22} = 0$

$$a_{13} = 2/3$$

$$a_{32} = 1/3$$

$$a_{13} = 2/3$$

$$a_{13} = 1/3$$

$$a_{22} = 1/3$$

$$a_{13} = 1/3$$

 $b_1(u) = 1/2$

$$b_1(v) = 1/2$$

$$b_1(w) = 0$$

$$b_1(w) = 0$$

 $b_2(w) = 1/2$

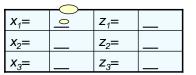
$$b_2(u) = 0$$

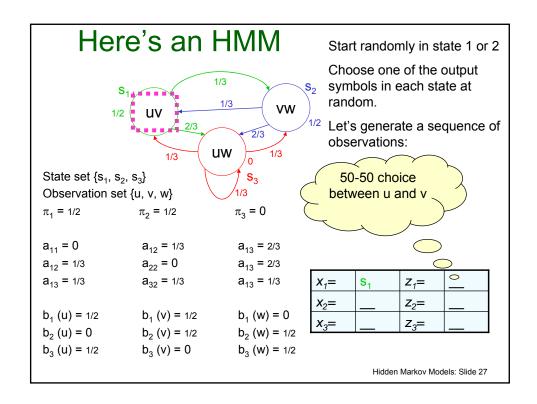
 $b_3(u) = 1/2$

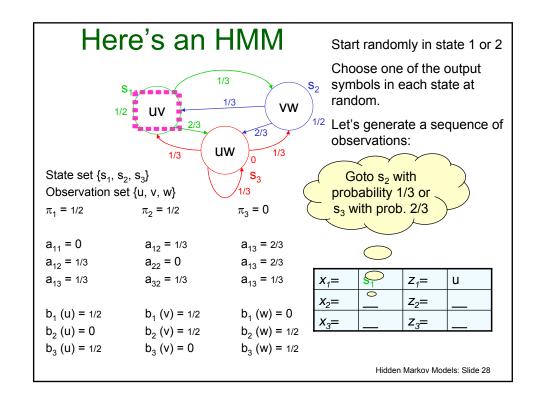
$$b_2(v) = 1/2$$

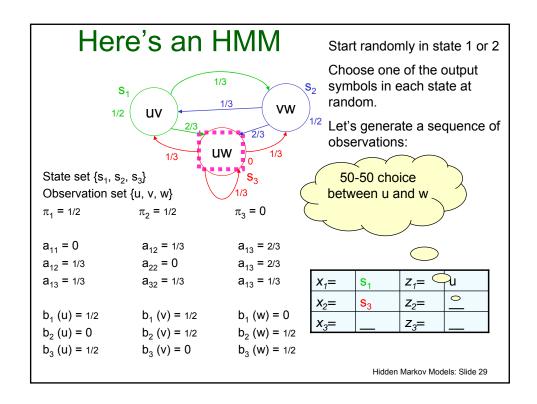
 $b_3(v) = 0$

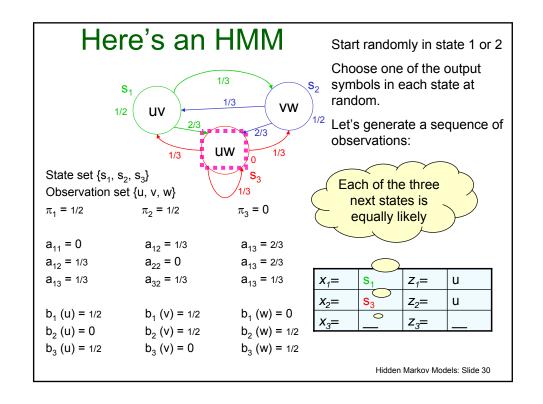
$$b_3(w) = 1/2$$

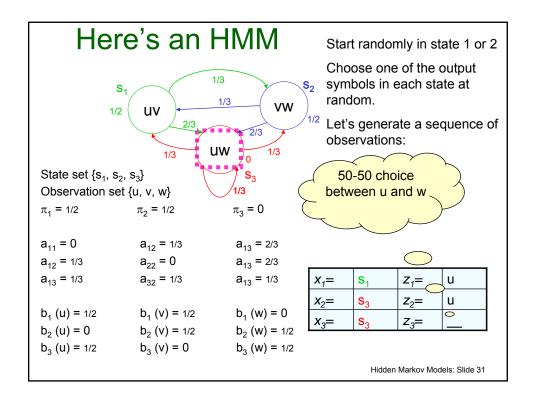


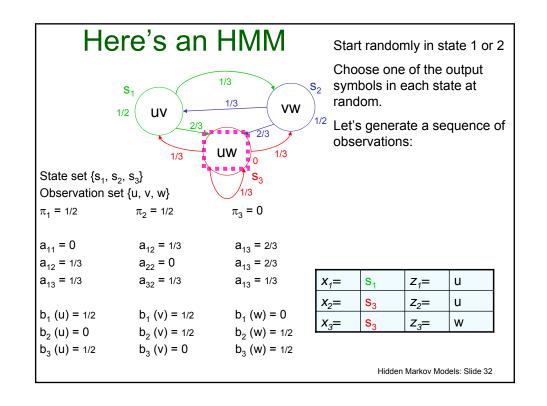


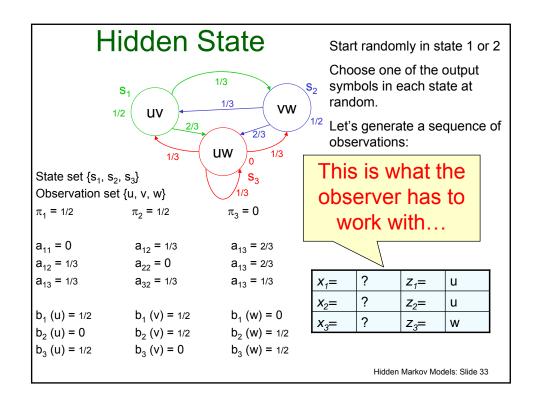












Problems to solve

- So now we have an HMM (or, more generally, a DBN) that models a temporal process of interest
- What are some of the kinds of problems we'd like to be able to solve with this?

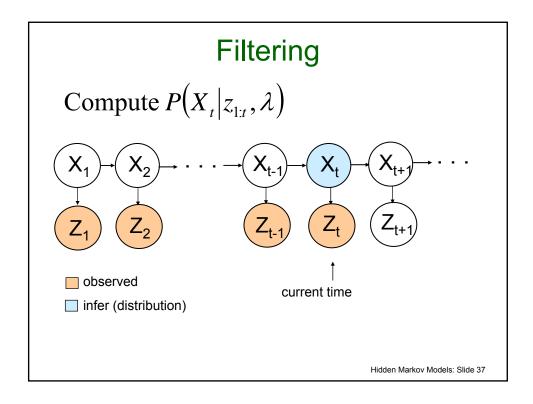
Temporal Model Problems to Solve

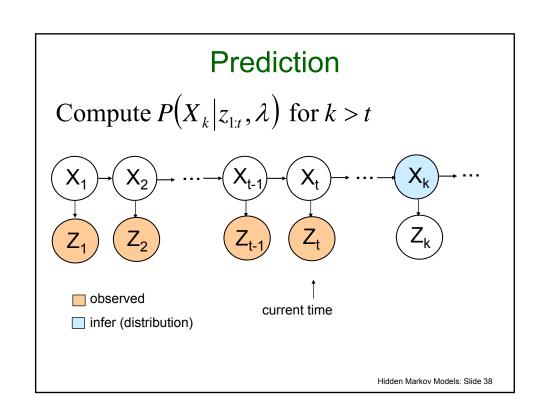
- Filtering: Compute P(X_t | z_{1:t}, λ)
- Prediction: Compute $P(X_k | z_{1:t}, \lambda)$ for k > t
- Smoothing: Compute P(X_k | z_{1:t}, λ) for k < t
- Observation sequence likelihood: Compute P(z_{1:T} | λ)
- Most probable path (state sequence): Compute $x_{1:T}$ maximizing $P(x_{1:T} | z_{1:T}, \lambda)$
- Maximum likelihood model: Given a set of observation sequences $\{z_{1:T_r}^r\}_r$, compute λ maximizing $\prod P(z_{1:T_r}^r \mid \lambda)$

Hidden Markov Models: Slide 35

Temporal Model Problems to Solve

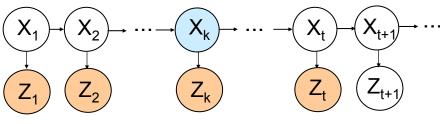
- Used in a wide variety of dynamical systems modeling applications:
 - filtering
 - prediction
 - smoothing
- Used especially in HMM applications:
 - · observation sequence likelihood
 - most probable path
 - · maximum likelihood model fitting





Smoothing

Compute $P(X_k | z_{1:t}, \lambda)$ for k < t



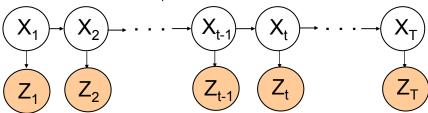
observed

infer (distribution)

Hidden Markov Models: Slide 39

Observation Sequence Likelihood

Compute $P(z_{1:t}|\lambda)$



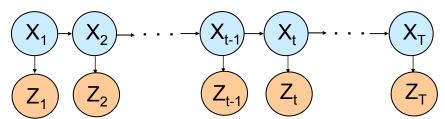
observed

What's the probability of this particular sequence of observations as a function of the model parameters?

Useful for such things as finding which of a set of HMM models best fits an observation sequence, as in speech recognition.

Most Probable Path

Compute $\arg \max_{x_{1:T}} P(x_{1:T}|z_{1:T}, \lambda)$



- observed
- infer (only most probable)

Not necessarily the same as the sequence of individually most probable states (obtained by smoothing)

Hidden Markov Models: Slide 41

Maximum Likelihood Model

Assume number of states given
Given a set of *R* observation sequences

$$z_{1:T_{1}}^{1} = \left(z_{1}^{1}, z_{2}^{1}, \dots, z_{T_{1}}^{1}\right)$$

$$z_{1:T_{2}}^{2} = \left(z_{1}^{2}, z_{2}^{2}, \dots, z_{T_{2}}^{2}\right)$$

$$\vdots$$

$$z_{1:T_{P}}^{R} = \left(z_{1}^{R}, z_{2}^{R}, \dots, z_{T_{P}}^{R}\right)$$

Compute

$$\lambda^* = \arg\max_{\lambda} \prod_{r=1}^{R} P(z_{1:T_r}^r \mid \lambda)$$

Solution methods for these problems

Let's start by considering the observation sequence likelihood problem:

Given
$$z_{1:T}$$
, compute $P(z_{1:t}|\lambda)$

Use our example HMM to illustrate

Hidden Markov Models: Slide 43

Prob. of a sequence of 3 observations

$$P(z_{1:3}) = \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \land x_{1:3}) \qquad \begin{array}{c} s_1 \\ 1/2 \\ \text{UV} \end{array} \qquad \begin{array}{c} 1/3 \\ 1/3 \\ \text{UW} \end{array} \qquad \begin{array}{c} s_2 \\ 1/3 \\ \text{VW} \end{array} \qquad \begin{array}{c} s_2 \\ 1/2 \\ \text{II} \end{array}$$

$$= \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \mid x_{1:3}) P(x_{1:3}) \qquad \begin{array}{c} s_1 \\ 1/3 \\ \text{II} \end{array} \qquad \begin{array}{c} s_2 \\ 1/3 \\ \text{II} \end{array} \qquad \begin{array}{c} s_3 \\ s_3 \\ 1/3 \end{array}$$

How do we compute $P(x_{1:3})$ for an arbitrary path $x_{1:3}$?

How do we compute $P(z_{1:3}|x_{1:3})$ for an arbitrary path $x_{1:3}$?

Prob. of a sequence of 3 observations

$$P(z_{1:3}) = \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \land x_{1:3}) \qquad \sum_{1/2} 1/3 \qquad \text{VW}$$

$$= \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \mid x_{1:3}) P(x_{1:3}) \qquad \text{UW} \qquad \sum_{0} 1/3 \qquad \text{UW} \qquad \sum_{0} 1/3 \qquad \text{II} \qquad$$

How do we compute $P(x_{1:3})$ $P(x_1,x_2,x_3) = P(x_1) P(x_2|x_1) P(x_3|x_2)$ for an arbitrary path $x_{1:3}$? E.g, $P(s_1, s_3, s_3) = 1/2 * 2/3 * 1/3 = 1/9$

How do we compute $P(z_{1:3}|x_{1:3})$ for an arbitrary path $x_{1:3}$?

Hidden Markov Models: Slide 45

Prob. of a sequence of 3 observations

$$P(z_{1:3}) = \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \land x_{1:3}) \qquad \begin{array}{c} s_1 \\ 1/2 \\ 1/2 \end{array} \qquad \begin{array}{c} 1/3 \\ 1/3 \end{array} \qquad \begin{array}{c} s_2 \\ 1/3 \\ 1/2 \end{array}$$

$$= \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \mid x_{1:3}) P(x_{1:3}) \qquad \begin{array}{c} 1/3 \\ 1/3 \end{array} \qquad \begin{array}{c} 1/3 \\ 1/3 \end{array}$$

How do we compute $P(x_{1:3})$ $P(x_1,x_2,x_3) = P(x_1) P(x_2|x_1) P(x_3|x_2)$ for an arbitrary path $x_{1:3}$? E.g, $P(s_1, s_3, s_3) = 1/2 * 2/3 * 1/3 = 1/9$

How do we compute $P(z_{1:3}|x_{1:3})$ for an arbitrary path $x_{1:3}$? $P(z_1, z_2, z_3 \mid x_1, x_2, x_3)$

$$P(z_1, z_2, z_3 | x_1, x_2, x_3)$$
= $P(z_1 | x_1) P(z_2 | x_2) P(z_3 | x_3)$
E.g, $P(uuw | s_1, s_3, s_3) = 1/2 * 1/2 * 1/2 = 1/8$

Prob. of a sequence of 3 observations

$$P(z_{1:3}) = \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \land x_{1:3}) \qquad \text{1/2} \qquad \text{UV} \qquad \text{1/3} \qquad \text{VW} \qquad \text{1/2}$$

$$= \sum_{x_{1:3} \in \text{paths of length 3}} P(z_{1:3} \mid x_{1:3}) P(x_{1:3}) \qquad \text{1/3} \qquad \text{1/3} \qquad \text{1/3} \qquad \text{1/3}$$

But this sum has 3³ = 27 terms in it!

Exponential in the length of the sequence

Need to use a dynamic programming trick like before

Hidden Markov Models: Slide 47

The probability of a given sequence of observations, non-exponential-cost-style

Given observation sequence $(z_1, z_2, ..., z_T) = z_{1:T}$

Define the forward variable

$$\alpha_t(i) = P(z_{1:t}, X_t = s_i \mid \lambda)$$
 for $1 \le t \le T$

 $\alpha_t(i)$ = Probability that, in a random trial,

- we'd have seen the first t observations; and
- we'd have ended up in s_i as the tth state visited.

Computing the forward variables

Base case:

$$\alpha_{1}(i) = P(z_{1} \wedge X_{1} = s_{i})$$

$$= P(z_{1}|X_{1} = s_{i})P(X_{1} = s_{i})$$

$$= b_{i}(z_{1})\pi_{i}$$

$$(1)$$

$$\pi_{i}$$

$$\vdots$$

$$\vdots$$

 π_i \downarrow \uparrow \uparrow

Note: For simplicity, we'll drop explicit reference to conditioning on the HMM parameters λ for many of the upcoming slides, but it's always there implicitly.

 $\left(\begin{array}{c} \mathbf{N} \end{array} \right)$

time step 1 2

Hidden Markov Models: Slide 49

Forward variables: inductive step

$$\alpha_{t+1}(j) = P(z_{1:t+1} \wedge X_{t+1} = s_j)$$

$$= \sum_{i=1}^{N} P(z_{1:t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j)$$

sum over all possible previous states

$$\begin{aligned} \alpha_{t+1}(j) &\equiv P(z_{1:t+1} \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^{N} P(z_{1:t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \end{aligned} \quad \begin{array}{c} \text{split off last observation} \\ &= \sum_{i=1}^{N} P(z_{1:t} \wedge z_{t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \end{aligned}$$

Hidden Markov Models: Slide 51

Forward variables: inductive step

$$\begin{split} \alpha_{t+1}(j) &\equiv P(z_{1:t+1} \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^N P(z_{1:t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^N P(z_{1:t} \wedge z_{t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^N P(z_{t+1} \wedge X_{t+1} = s_j | z_{1:t} \wedge X_t = s_i) P(z_{1:t} \wedge X_t = s_i) \end{split}$$

$$\begin{aligned} \alpha_{t+1}(j) &\equiv P(z_{1:t+1} \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^{N} P(z_{1:t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^{N} P(z_{1:t} \wedge z_{t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^{N} P(z_{1:t} \wedge X_{t+1} = s_j | z_{1:t} \wedge X_t = s_i) P(z_{1:t} \wedge X_t = s_i) \\ &= \sum_{i=1}^{N} P(z_{t+1} \wedge X_{t+1} = s_j | X_t = s_i) \alpha_t(i) \end{aligned}$$

latest state and observation conditionally independent of earlier observations given previous state

Hidden Markov Models: Slide 53

Forward variables: inductive step

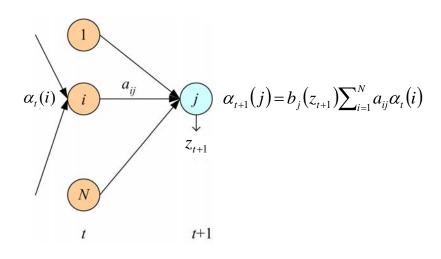
$$\begin{split} \alpha_{t+1}(j) &\equiv P(z_{1:t+1} \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^N P(z_{1:t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^N P(z_{1:t} \wedge z_{t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j) \\ &= \sum_{i=1}^N P(z_{t+1} \wedge X_{t+1} = s_j | z_{1:t} \wedge X_t = s_i) P(z_{1:t} \wedge X_t = s_i) \\ &= \sum_{i=1}^N P(z_{t+1} \wedge X_{t+1} = s_j | X_t = s_i) \alpha_t(i) \\ &= \sum_{i=1}^N P(z_{t+1} | X_{t+1} = s_j \wedge X_t = s_i) P(X_{t+1} = s_j | X_t = s_i) \alpha_t(i) \end{split}$$

$$\begin{aligned} \alpha_{t+1}(j) &\equiv P \Big(z_{1:t+1} \wedge X_{t+1} = s_j \Big) \\ &= \sum_{i=1}^N P \Big(z_{1:t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j \Big) \\ &= \sum_{i=1}^N P \Big(z_{1:t} \wedge z_{t+1} \wedge X_t = s_i \wedge X_{t+1} = s_j \Big) \\ &= \sum_{i=1}^N P \Big(z_{t+1} \wedge X_{t+1} = s_j \big| z_{1:t} \wedge X_t = s_i \Big) P \Big(z_{1:t} \wedge X_t = s_i \Big) \\ &= \sum_{i=1}^N P \Big(z_{t+1} \wedge X_{t+1} = s_j \big| X_t = s_i \Big) \alpha_t(i) \\ &= \sum_{i=1}^N P \Big(z_{t+1} \big| X_{t+1} = s_j \wedge X_t = s_i \Big) P \Big(X_{t+1} = s_j \big| X_t = s_i \Big) \alpha_t(i) \\ &= \sum_{i=1}^N P \Big(z_{t+1} \big| X_{t+1} = s_j \Big) a_{ij} \alpha_t(i) \end{aligned}$$
Takest observation conditionally independent of earlier states given latest state

Hidden Markov Models: Slide 55

Forward variables: inductive step

$$\begin{aligned} \alpha_{t+1}(j) &\equiv P(z_{1:t+1} \wedge X_{t+1} = s_{j}) \\ &= \sum_{i=1}^{N} P(z_{1:t+1} \wedge X_{t} = s_{i} \wedge X_{t+1} = s_{j}) \\ &= \sum_{i=1}^{N} P(z_{1:t} \wedge z_{t+1} \wedge X_{t} = s_{i} \wedge X_{t+1} = s_{j}) \\ &= \sum_{i=1}^{N} P(z_{t+1} \wedge X_{t+1} = s_{j} | z_{1:t} \wedge X_{t} = s_{i}) P(z_{1:t} \wedge X_{t} = s_{i}) \\ &= \sum_{i=1}^{N} P(z_{t+1} \wedge X_{t+1} = s_{j} | X_{t} = s_{i}) \alpha_{t}(i) \\ &= \sum_{i=1}^{N} P(z_{t+1} | X_{t+1} = s_{j} \wedge X_{t} = s_{i}) P(X_{t+1} = s_{j} | X_{t} = s_{i}) \alpha_{t}(i) \\ &= \sum_{i=1}^{N} P(z_{t+1} | X_{t+1} = s_{j}) a_{ij} \alpha_{t}(i) \\ &= b_{j}(z_{t+1}) \sum_{i=1}^{N} a_{ij} \alpha_{t}(i) \end{aligned}$$



Hidden Markov Models: Slide 57

Observation Sequence Likelihood

Efficient solution to the *observation sequence likelihood* problem using the forward variables:

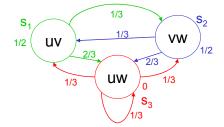
$$P(z_{1:t}|\lambda) = \sum_{i=1}^{N} P(z_{1:t} \wedge X_{t} = s_{i}|\lambda) = \sum_{i=1}^{N} \alpha_{t}(i)$$

In our example

$$\alpha_{t}(i) \equiv P(z_{1:t} \wedge X_{t} = s_{i} | \lambda)$$

$$\alpha_{1}(i) = b_{i}(z_{1})\pi_{i}$$

$$\alpha_{t+1}(j) = b_{j}(z_{t+1})\sum_{i} a_{ij} \alpha_{t}(i)$$



Observed: $z_1 z_2 z_3 = u u w$

$$\begin{array}{lll} \alpha_{1}(1) = \frac{1}{4} & \alpha_{2}(1) = 0 & \alpha_{2}(1) = 0 \\ \alpha_{1}(2) = 0 & \alpha_{2}(2) = 0 & \alpha_{3}(2) = \frac{1}{72} \\ \alpha_{1}(3) = 0 & \alpha_{2}(3) = \frac{1}{12} & \alpha_{3}(3) = \frac{1}{72} \end{array}$$

So probability of observing uuw is 1/36

Hidden Markov Models: Slide 59

Filtering

Efficient solution to the *filtering* problem using the forward variables:

$$P(X_{t} = s_{i} | z_{1:t}) = \frac{P(X_{t} = s_{i} \wedge z_{1:t})}{P(z_{1:t})} = \frac{\alpha_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j)}$$

Estimating current state based on all observations up to the current time.

So in our example, after observing uuw, prob. of being in s_1 is 0 and prob. of being in s_2 = prob. of being in s_3 = 1/2

Prediction

- Note that the (state) prediction problem can be viewed as a special case of the filtering problem in which there are missing observations.
- That is, trying to compute the probability of X_k given observations up through time step t, with k > t, amounts to filtering with missing observations at time steps t+1, t+2, ..., k.
- Therefore, we now focus on the missing observations problem.

Hidden Markov Models: Slide 61

Missing Observations

 Looking at the derivation of the inductive step for computing the forward variables, we see that the last step involves writing

$$\alpha_{t+1}(j) = P(z_{t+1}|X_{t+1} = s_j) P(X_{t+1} = s_j | \text{all observations up through time } t)$$

$$b_j(z_{t+1}) \sum_{i=1}^{N} a_{ij} \alpha_t(i)$$

- Thus the second factor gives us a prediction of the state at time t+1 based on all earlier observations, which we then multiply by the observation probability at time t+1 given the state at time t+1.
- If there is no observation at time t+1, clearly the set of observations made through time t+1 is the same as the set of observations made through time t.

Missing Observations (cont.)

· Thus we redefine

$$\alpha_t(i) = P(X_t = s_i \land \text{all available observations through time } t)$$

- This generalizes our earlier definition but allows for the possibility that some observations are present and others are missing
- · Then define

$$b_i'(z_t) = \begin{cases} b_i(z_t) & \text{if there is an observation at time } t \\ 1 & \text{otherwise} \end{cases}$$

 It's not hard to see that the correct forward compution should then proceed as:

$$\alpha_1(i) = b_i'(z_1)\pi_i$$

$$\alpha_{t+1}(j) = b_j'(z_{t+1})\sum a_{ij}\alpha_t(i)$$

- Amounts to propagating state predictions forward wherever there are no observations
- Interesting special case: When there are *no* observations at any time, the α values are identical to the *p* values we defined earlier for Markov chains

Hidden Markov Models: Slide 63

Solving the smoothing problem

Define the backward variables

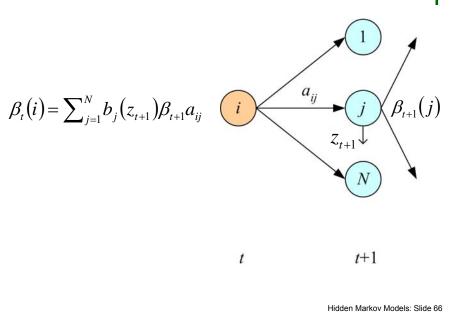
$$\beta_t(i) = P(z_{t+1:T}|X_t = s_i, \lambda)$$

- Probability of observing z_{t+1}, ..., z_T given that system was in state s_i at time step t
- These can be computed efficiently by starting at the end (time T) and working backwards
- Base case: $\beta_T(i)=1$ for all $i, 1 \le i \le N$
 - Valid because z_{T+1:T} is an empty sequence of observations so its probability is 1

Backward variables: inductive step

$$\beta_{t}(i) \equiv P(z_{t+1:T} | X_{t} = s_{i})
= \sum_{j=1}^{N} P(z_{t+1:T} \wedge X_{t+1} = s_{j} | X_{t} = s_{i})
= \sum_{j=1}^{N} P(z_{t+1:T} | X_{t+1} = s_{j} \wedge X_{t} = s_{i}) P(X_{t+1} = s_{j} | X_{t} = s_{i})
= \sum_{j=1}^{N} P(z_{t+1} \wedge z_{t+2:T} | X_{t+1} = s_{j} \wedge X_{t} = s_{i}) a_{ij}
= \sum_{j=1}^{N} P(z_{t+1} \wedge z_{t+2:T} | X_{t+1} = s_{j}) a_{ij}
= \sum_{j=1}^{N} P(z_{t+1} | z_{t+2:T} \wedge X_{t+1} = s_{j}) P(z_{t+2:T} | X_{t+1} = s_{j}) a_{ij}
= \sum_{j=1}^{N} P(z_{t+1} | X_{t+1} = s_{j}) \beta_{t+1}(j) a_{ij}
= \sum_{i=1}^{N} b_{i}(z_{t+1}) \beta_{t+1} a_{ij}$$

Backward variables: inductive step



Solving the smoothing problem

· Use the notation

$$\gamma_t(i) = P(X_t = s_i | z_{1:T})$$

for the probability we want to compute.

Then

$$\gamma_{t}(i) = cP(z_{1:T}|X_{t} = s_{i})P(X_{t} = s_{i})
= cP(z_{1:t}|X_{t} = s_{i})P(z_{t+1:T}|X_{t} = s_{i})P(X_{t} = s_{i})
= cP(z_{1:t} \wedge X_{t} = s_{i})P(z_{t+1:T}|X_{t} = s_{i})
= c\alpha_{t}(i)\beta_{t}(i)$$

where $c = 1/P(z_{1:T})$ is a constant of proportionality we can ignore as long as we normalize to get the actual probs.

Hidden Markov Models: Slide 67

Smoothing

Efficient solution to the *smoothing* problem using the forward and backward variables:

$$P(X_{t} = s_{i} | z_{1:T}) = \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j)\beta_{t}(j)}$$

Estimating a state based on all observations before, during, and after that time step.

Forward-backward algorithm

Solving the most probable path problem

- Want $\operatorname{arg\,max}_{x_{1:T}} P(x_{1:T}|z_{1:T})$
- One approach: $\arg \max_{x_{1:T}} P(x_{1:T}|z_{1:T}) = \arg \max_{x_{1:T}} \frac{P(z_{1:T}|x_{1:T})P(x_{1:T})}{P(z_{1:T})}$ $= \arg \max_{x_{1:T}} P(z_{1:T}|x_{1:T})P(x_{1:T})$
- Easy to compute each factor for a given state and observation sequence, but number of paths is exponential in T
- · Use dynamic programming instead

Hidden Markov Models: Slide 69

DP for Most Probable Path

Define

$$\delta_t(i) = \max_{x_{1:t-1}} P(x_{1:t-1} \wedge X_t = s_i \wedge z_{1:t})$$

- A path giving this maximum is one of length t-1 having the highest probability of simultaneously
 - occuring
 - ending at s_i
 - producing observation sequence z_{1:t}

DP for MPP (cont.)

- We'll show that these values can be computed by an efficient forward computation similar to the computation of the α values
- But first, let's check that it gives us something useful:

$$\delta_{T}(i) = \max_{x_{1:T-1}} P(x_{1:T-1} \wedge X_{T} = s_{i} \wedge z_{1:T})$$

$$= \max_{x_{1:T-1}} P(x_{1:T-1} \wedge X_{T} = s_{i} | z_{1:T}) P(z_{1:T})$$

• Thus a value of i maximizing $\delta_{\rm T}({\rm i})$ identifies a state which represents the final state in a path maximizing $P(x_{\rm l:T}|z_{\rm l:T})$

Hidden Markov Models: Slide 71

DP for MPP (cont.)

First, base case is

$$\delta_1(i) = \max_{\text{one choice}} P(X_t = s_i \land z_{1:1})$$

$$= P(z_1 | X_t = s_i) P(X_t = s_i)$$

$$= b_i(z_1) \pi_i$$

 Then, since the max. prob. path ending at s_j at time t+1 must go through some state at time t, we can write

$$\delta_{t+1}(j) = \max_{x_{1:t}} P(x_{1:t} \wedge X_{t+1} = s_j \wedge z_{1:t+1})$$

$$= \max_{i} \max_{x_{1:t-1}} P(x_{1:t-1} \wedge X_t = s_i \wedge z_{1:t} \wedge z_{t+1} \wedge X_{t+1} = s_j)$$

Now work on just this part Call it $\Delta(i,j)$

DP for MPP (cont.)

 Using the chain rule and the Markov property, we find that the probability to be maximized can be written as

$$\Delta(i, j) = P(x_{1:t-1} \land X_t = s_i \land z_{1:t} \land z_{t+1} \land X_{t+1} = s_j)$$

$$= P(z_{t+1} \land X_{t+1} = s_j | x_{1:t-1} \land X_t = s_i \land z_{1:t}) P(x_{1:t-1} \land X_t = s_i \land z_{1:t})$$

$$= P(z_{t+1} \land X_{t+1} = s_j | X_t = s_i) P(x_{1:t-1} \land X_t = s_i \land z_{1:t})$$

$$= P(z_{t+1} | X_{t+1} = s_j) P(X_{t+1} = s_j | X_t = s_i) P(x_{1:t-1} \land X_t = s_i \land z_{1:t})$$

$$= P(z_{t+1} | x_{t+1} = s_j) P(x_{1:t-1} \land X_t = s_i \land z_{1:t})$$

$$= P(z_{t+1} | x_{t+1} = s_j) P(x_{1:t-1} \land x_t = s_i \land z_{1:t})$$

Hidden Markov Models: Slide 73

DP for MPP (cont.)

· Finally, then, we get

$$\delta_{t+1}(j) = \max_{i} \max_{x_{1:t-1}} \Delta(i, j)$$

$$= \max_{i} \max_{x_{1:t-1}} \left[b_{j}(z_{t+1}) a_{ij} P(x_{1:t-1} \wedge X_{t} = s_{i} \wedge z_{1:t}) \right]$$

$$= b_{j}(z_{t+1}) \max_{i} \left[a_{ij} \max_{x_{1:t-1}} P(x_{1:t-1} \wedge X_{t} = s_{i} \wedge z_{1:t}) \right]$$

$$= b_{j}(z_{t+1}) \max_{i} a_{ij} \delta_{t}(i)$$

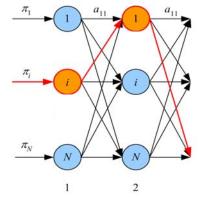
- This is inductive step
- Virtually identical to computation of forward variables α only difference is that it uses max instead of sum
- Also need to keep track of which state s_i gives max for each state s_j at the next time step to be able to determine actual MPP, not just its probability

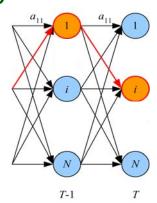
Viterbi Algorithm for Most Probable Path Summary

- Base case: $\forall i \quad \delta_1(i) = b_i(z_1)\pi_i$
- Inductive step: $\forall j \ \delta_{t+1}(j) = b_j(z_{t+1}) \max_i a_{ij} \delta_t(i)$
- Compute for all states at t=1, then t=2, etc.
- Also save index giving max for each state at each time step (backward pointers)
- Construct the MPP by determining state with largest $\delta_T(i)$, then following backward pointers to time steps T-1, T-2, etc.

Hidden Markov Models: Slide 75

Viterbi Algorithm

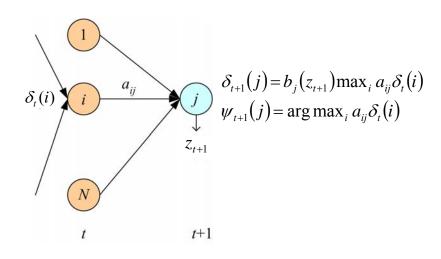




Store two numbers at each node in this trellis, one for δ and the other a backward pointer to a node in the previous layer giving the max for this node – this is computed left to right.

To find a most probable path, determine a node in the T layer with max δ value, then follow backward pointers from right to left.

Viterbi algorithm: inductive step



Hidden Markov Models: Slide 77

Prob. of a given transition

- The final problem we want to address is the HMM inference (learning) problem, given a training set of observation sequences
- Most of the ingredients for deriving a max. likelihood method for this are in place
- But there's one more sub-problem we'll need to address:

Given an observation sequence $z_{1:T}$, what's the probability that the state transition s_i to s_i occurred at time t?

Thus we define

$$\xi_t(i,j) = P(X_t = s_i \wedge X_{t+1} = s_j | z_{1:T})$$

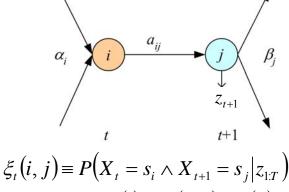
Prob. of a given transition (cont.)

$$\begin{split} \xi_{t}(i,j) &\equiv P\left(X_{t} = s_{i} \wedge X_{t+1} = s_{j} \middle| z_{1:T}\right) \\ &= cP\left(z_{1:T} \middle| X_{t} = s_{i} \wedge X_{t+1} = s_{j}\right) P\left(X_{t} = s_{i} \wedge X_{t+1} = s_{j}\right) \\ &= cP\left(z_{1:T} \middle| X_{t} = s_{i} \wedge X_{t+1} = s_{j}\right) P\left(X_{t+1} = s_{j} \middle| X_{t} = s_{i}\right) P\left(X_{t} = s_{i}\right) \\ &= cP\left(z_{1:T} \middle| X_{t} = s_{i} \wedge X_{t+1} = s_{j}\right) a_{ij} P\left(X_{t} = s_{i}\right) \\ &= cP\left(z_{1:T} \middle| X_{t} = s_{i}\right) P\left(z_{t+1} \middle| X_{t+1} = s_{j}\right) P\left(z_{t+2:T} \middle| X_{t+1} = s_{j}\right) a_{ij} P\left(X_{t} = s_{i}\right) \\ &= cP\left(z_{1:T} \wedge X_{t} = s_{i}\right) b_{j}\left(z_{t+1}\right) P\left(z_{t+2:T} \middle| X_{t+1} = s_{j}\right) a_{ij} \\ &= c\alpha_{t}(i) b_{j}\left(z_{t+1}\right) \beta_{t+1}(j) a_{ij} \\ &= c\alpha_{t}(i) a_{ij} b_{j}\left(z_{t+1}\right) \beta_{t+1}(j) \end{split}$$

$$c = 1/P\left(z_{1:T}\right) \text{ is a normalizing constant we can ignore as long as we make the sum over all (i,j) pairs equal to 1 when computing actual probabilities.}$$

Hidden Markov Models: Slide 79

Prob. of a given transition (cont.)



$$\xi_{t}(i, j) = P(X_{t} = s_{i} \wedge X_{t+1} = s_{j} | z_{1:T})$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(z_{t+1})\beta_{t+1}(j)}{\sum_{k,l}\alpha_{t}(k)a_{kl}b_{l}(z_{t+1})\beta_{t+1}(l)}$$

Max. Likelihood HMM Inference

Given a state set $\{s_1, s_2, ..., s_N\}$ and a set of R observation sequences

$$z_{1:T_1}^{1} = (z_1^{1}, z_2^{1}, \dots, z_{T_1}^{1})$$

$$z_{1:T_2}^{2} = (z_1^{2}, z_2^{2}, \dots, z_{T_2}^{2})$$

$$\vdots$$

$$z_{1:T_R}^{R} = (z_1^{R}, z_2^{R}, \dots, z_{T_R}^{R})$$

determine parameter set $\lambda = (\pi_i, \{a_{ij}\}, \{b_i(o_j)\})$ maximizing

$$\lambda^* = \arg\max_{\lambda} \prod_{r=1}^{R} P(z_{1:T_r}^r \mid \lambda)$$
From now on, we'll make conditioning on λ explicit

From now on, we'll

Hidden Markov Models: Slide 81

A cheat

Let's first imagine that along with each observation sequence

$$z_{1:T_r}^r = (z_1^r, z_2^r, \dots, z_{T_r}^r)$$

an oracle also gives us the corresponding state sequence

$$x_{1:T_r}^r = (x_1^r, x_2^r, \dots, x_{T_r}^r)$$

Then we could obtain max. likelihood estimates of all parameters as follows:

$$\hat{\pi}_i = \frac{\text{# of sequences starting with } s_i}{\text{total # of sequences}}$$
of transitions $s_i \to s_i$

$$\hat{a}_{ij} = \frac{\text{\# of transitions } s_i \to s_j}{\text{\# of visits to state } s_i}$$

$$\hat{b}_i(o_k) = \frac{\text{# of visits to state } s_i \text{ where } o_k \text{ observed}}{\text{# visits to state } s_i}$$

A cheat (cont.)

More formally, define the indicator functions

$$\chi_t^r(i) = \begin{cases} 1 & \text{if } x_t^r = s_i \\ 0 & \text{otherwise} \end{cases}$$

$$\chi_t^r(i \to j) = \begin{cases} 1 & \text{if } x_t^r = s_i \text{ and } x_{t+1}^r = s_j \\ 0 & \text{otherwise} \end{cases}$$

$$\chi_t^r(i:k) = \begin{cases} 1 & \text{if } x_t^r = s_i \text{ and } z_t^r = o_k \\ 0 & \text{otherwise} \end{cases}$$

Hidden Markov Models: Slide 83

A cheat (cont.)

In terms of these indicator functions, our ML estimates would then be

$$\hat{\pi}_i = \frac{\sum_{r=1}^R \chi_1^r(i)}{R}$$

$$\hat{a}_{ij} = \frac{\sum_{r=1}^R \sum_{t=1}^{T_r-1} \chi_t^r(i \to j)}{\sum_{r=1}^R \sum_{t=1}^{T_r-1} \chi_t^r(i)}$$
 For this, we can't use the last state in any of the training sequences because there's no next state
$$\hat{b}_i(o_k) = \frac{\sum_{r=1}^R \sum_{t=1}^{T_r} \chi_t^r(i:k)}{\sum_{r=1}^R \sum_{t=1}^{T_r} \chi_t^r(i)}$$

The bad news ...

- There is no oracle to tell us the state sequence corresponding to each observation sequence
- So we don't know these actual indicator function values
- · So we can't compute these sums

Hidden Markov Models: Slide 85

The good news ...

• We can compute their expected values efficiently:

$$\gamma_t^r(i) \equiv P(X_t = s_i | z_{1:T_r}^r, \lambda) = E(\chi_t^r(i) | \lambda)$$

$$\xi_t^r(i, j) \equiv P(X_t = s_i \land X_{t+1} = s_j | z_{1:T_r}^r, \lambda) = E(\chi_t^r(i \to j) | \lambda)$$

Also:

$$E(\chi_t^r(i:k)|\lambda) = P(X_t = s_i \wedge Z_t = o_k | z_{1T}^r, \lambda)$$

$$= \begin{cases} P(X_t = s_i | z_{1T}^r, \lambda) & \text{if } z_t^r = o_k \\ 0 & \text{otherwise} \end{cases}$$

$$= \gamma_t^r(i)I(z_t^r = o_k)$$
Usual indicator function:

1 if true, 0 if false

• We can compute their expected values efficiently:

$$\gamma_{t}^{r}(i) \equiv P(X_{t} = s_{i} | z_{1:T_{r}}^{r}, \lambda) = E(\chi_{t}^{r})$$

$$\xi_{t}^{r}(i, j) \equiv P(\lambda \leq A X) = E(\chi_{t}^{r})$$

· Also:



EM for HMMs (Baum-Welch)

E-step

Use the current estimate of model parameters $\boldsymbol{\lambda}$ to compute all the $\gamma_t^r(i)$ and $\xi_t^r(i,j)$ values for each training sequence $z_{1:T}^r$.

M-step

$$\pi_{i} \leftarrow \frac{\sum_{r=1}^{R} \gamma_{1}^{r}(i)}{R} \quad a_{ij} \leftarrow \frac{\sum_{r=1}^{R} \sum_{t=1}^{T_{r}-1} \xi_{t}^{r}(i,j)}{\sum_{r=1}^{R} \sum_{t=1}^{T_{r}-1} \gamma_{t}^{r}(i)}$$

$$b_{i}(k) \leftarrow \frac{\sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \gamma_{t}^{r}(i) I(z_{t}^{r} = o_{k})}{\sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \gamma_{t}^{r}(i)}$$

Remarks on Baum-Welch

- Bad news: There may be many local maxima
- Good news: The local maxima are usually adequate models of the data
- Any probabilities initialized to zero will remain zero throughout – useful when one wants a model with limited state transitions

Hidden Markov Models: Slide 89

Summary of solution methods

- Filtering: forward variables (α's)
- Prediction: (modified) forward variables
- Smoothing: forward-backward algorithm
- Observation sequence likelihood: forward variables
- Most probable path: Viterbi algorithm
- Maximum likelihood model: Baum-Welch algorithm

Some good references

- Standard HMM reference:
 - L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257-286, 1989.
- Excellent reference for Dynamic Bayes Nets as a unifying framework for probabilistic temporal models (including HMMs and Kalman filters):

Chapter 15 of Artificial Intelligence, A Modern Approach, 2nd Edition, by Russell & Norvig

Hidden Markov Models: Slide 91

What You Should Know

- What an HMM is
- Definition, computation, and use of $\alpha_{\scriptscriptstyle t}(i)$
- The Viterbi algorithm
- Outline of the EM algorithm for HMM learning (Baum-Welch)
- Be comfortable with the kind of math needed to derive the HMM algorithms described here
- What a DBN is and how an HMM is a special case
- Appreciate that a DBN (and thus an HMM) is really just a special kind of Bayes net