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Categories for Imperative Semantics Lecture 1
PLDG Seminar

One question that often arises about category theory is: when do you need it? The actual answer is
that you rarely need it—you can do denotational semantics quite straightforwardly without ever in-
voking category theory. (Although you may have problems reading modern papers on the subject...)
Category theory rarely saves you from hard work, if there is hard work to be done. The main thing
is that category theory provides you with a nice, elegant, and abstract way to talk about semantics
by abstracting away from possibly overly concrete details. Thus, categorical language is useful
to highlight the commonality and relationship between denotational domains. For instance, how
would you describe the intrinsic differences and similarities between state-transformer semantics,
predicate-transformer semantics, partial-order semantics, and metric-space semantics [Bakker and
Vink 1996]? Of course, an answer to this question is topologically, since denotational semantics can
be fruitfully understood as the topological study of computation. But then again, category theory
was originally developed to make sense of topological notions.

The language IMP. Consider the following simple imperative language [Gunter 1992; Winskel
1993].

S ::=
skip

xi := E

S1;S2

if B then S1 else S2

while B do S

We will assume that the intuition behind the syntax is clear. Some things should be noted, however.
We assume a finite set of variables x1, . . . , xn that can be used to write programs. Also, rather than
provide an explicit syntax for expressions E and tests B, we simply assume that these are given as a
collection of appropriate expressions. For the time being, we will not have much interesting things
to say about them. (That may change, though.)

A state-transformer semantics. First off, consider the standard semantics given, for instance, in
Winskel [1993]. The intuition is to view the meaning of a program as a function transforming a
state into a new state, hence the moniker state-transformer semantics. There is a little difficulty, and
it has to do with the fact that one can write nonterminating programs in IMP; to deal with this, we
define the meaning of a program to be a partial function from states to states. There are a number
of equivalent ways of presenting partial functions, let us pick one that is useful. A partial function
f between a set X and a set Y , written f : X ⇀ Y , a function from a subset of X to Y . The subset
of X on which f is defined, called the support of f , is denoted dfe. If x ∈ dfe, then f(x) ∈ Y .
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We will sometimes define a partial function from X to Y with support A as λx∈A.e[x] (where e is
some expression with free variable x) as the partial function f which is defined as e[x] on x ∈ A,
and undefined on x 6∈ A. (In general, we will freely use λ-notation to define functions.)

Given two partial functions, we compose them as follows. Given f : X ⇀ Y and g : Y ⇀ Z, then
g◦pf : X ⇀ Z is the partial function with support dfe∪f−1(dge) defined as (g◦pf)(x) = g(f(x)).

Let V be a set where the variables take on their values. For instance, V could be Z if we want to
model integer variables. The state of a program is a tuple of values, one for each variable. That is,
the set of states is simply V × · · · × V = V n. We use the notation ~v to represent an element of V n,
that is, an n-tuple of values. As usual, π1, . . . , πn are the projection functions.

Assume an appropriate semantics for tests and expressions. Let B be a set with two elements, say
{T, F}. A test B is given a semantics as a total function [[B]] : V n −→ B, Note that because we
take the semantics to be a total function, this means that tests always evaluate to a boolean value
(i.e., they always terminate, and moreover they have no side-effects).

An expression E is given a semantics as a total function [[E]] : V n −→ V . Intuitively, an expression
E computes a value from the values of all the variables. Again, because we take the function to be
total, evaluation of E is assumed to always terminate, and moreover not to have any side-effects.
(Later, we shall lift the restriction on termination.)

The semantics of a program [[S]], is a partial function from V n to V n, given by:

[[skip]] = λz∈V n.z

[[xi := E]] = λz∈V n.(π1(z), . . . , [[E]](z), . . . , πn(z))
[[S1;S2]] = [[S2]] ◦P [[S1]]

[[if B then S1 else S2]] = λz∈P.

{
[[S1]](z) if [[B]](z) = T

[[S2]](z) if [[B]](z) = F

where P = {z | [[B]](z) = T and z ∈ d[[S1]]e}∪
{z | [[B]](z) = F and z ∈ d[[S2]]e}

[[while B do S]] = λz∈ ∪∞i=0 dfne.fnz(z)
where f0 = λz∈∅.z

fn+1 = λz∈P.

{
(fn ◦p [[S]])(z) if [[B]](z) = T

z if [[B]](z) = F

where P = {z | [[B]](z) = F}∪
{z | [[B]](z) = T and z ∈ dfn ◦p [[S]]e}

nz is the least n such that z ∈ dfne.

Thus, the semantics of a program is a partial function [[S]] : V n ⇀ V n. In other words, if
(v1, . . . , vn) ∈ V n is an initial state of the program, where variable xi initially has value vi, then
we get:
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• if (v1, . . . , vn) 6∈ d[[S]]e, the program S does not terminate on those inputs;

• otherwise, [[S]](v1, . . . , vn) = (v′1, . . . , v
′
n), meaning that at the end of the execution of S,

variable xi takes value v′i.

We can check the “correctness” of this semantics against a more “intuitive” operational semantics
given in terms of explicit rewriting rules [Winskel 1993]. We are not going to do that here (yet).

Complete partial orders. There is an alternative to using partial functions to give a semantics
to IMP, of course, and that is to use partial orders. Roughly, in the above context, this amount to
considering adding a special token to sets, a token that denotes the value “undefined”, rather than
considering functions that are sometimes undefined. (We will make this statement precise in a little
while.) Partial orders are of course typically used to give semantics to higher-order languages. We
will not need their full generality here. However, they will make the rule for while much more
pleasant.

Let us go quickly over the definitions. We follow the treatment of Winskel [1993, chapter 8]. A
complete partial order (cpo) is a tuple (X,≤) where X is a set (called the carrier set) and ≤ is a
partial order on X such that every ω-chain x0 ≤ x1 ≤ · · · ≤ xn ≤ . . . of elements of X has a least
upper bound t∞n=0xn in X . We often refer to a cpo simply by the name of its carrier set, leaving the
partial order implicit. A cpo (X,≤) is said to be a cpo with bottom if there is an element (typically
written ⊥) such that for all x ∈ X , ⊥ ≤ x. (Such an element is necessarily unique.) Some authors
reserve the term “cpo” for cpos with bottom (Plotkin [1983] does, for instance), and refer to the
cpos we have defined either as bottomless ω-cpos, or predomains.

A function f : (X,≤X) −→ (Y,≤Y ) between cpos (really, a function between the carrier sets X
and Y ) is continuous if it is monotonic (for all x, x′ ∈ X , we have x ≤X x′ implies f(x) ≤Y f(x′))
and for all ω-chains x0 ≤X x1 ≤X . . . in X , we have t∞n=0f(xn) = f(t∞n=0xn).

A cpo (X,≤) is called discrete if x ≤ x′ implies x = x′. Thus, a discrete cpo has a completely
trivial ordering relation.

Given a cpo (X,≤), we can lift the cpo by adjoining a bottom element. The lifted cpo X⊥ is
defined as (X ] {⊥},≤⊥) and obtained by taking the following ordering relation: (⊥, 1) ≤⊥ v for
all v ∈ X ]{⊥}, and (x, 0) ≤⊥ (x′, 0) if and only if x ≤ x′. (Recall the tagging we use for disjoint
unions.)

Given two cpos, we can create a product cpo (X,≤X)×(Y,≤ Y ) in the obvious way, by considering
(X × Y,≤) where the ordering ≤ is defined by taking (x, y) ≤ (x′, y′) if and only if x ≤X x′ and
y ≤Y y′.

The set of all continuous functions between two cpos is itself a cpo. Given cpos (X,≤X) and
(Y,≤Y ), define the cpo [X −→ Y ] = (F,≤) where F is the set of all continuous functions between
X and Y , and taking f ≤ g if and only for all x ∈ X , f(x) ≤Y g(x). Note that if the target cpo Y
has a bottom element ⊥Y , then [X −→ Y ] has a bottom element, namely the constant function ⊥Y .
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The key thing about cpos is that every continuous function on a given cpo with bottom has a fixed
point. More precisely, if (X,≤) is a cpo with bottom and f : X −→ X is a continuous function,
then there exists an element fix f ∈ X such that

f(fix f ) = fix f .

This fixed point can be obtained by taking the least upper bound of the ω-chain ⊥ ≤ f(⊥) ≤
f(f(⊥)) ≤ . . . .

We can give a semantics similar to that of partial functions using the above. Now, we choose a
discrete cpo (V,≤V ) for the values of the variables. Thus, the state of the program will be an
element of the product cpo V n given by (V,≤V )× · · · × (V,≤V ) = (V n,≤), the cpo of tuples of
values from V , ordered pointwise.

Let B be the discrete cpo of any two-element set, say {T, F}. We assume for every test B a con-
tinuous function [[B]] : V n −→ B, that is, from the cpo V n to discrete cpo B. The interpretation is
the same as in the partial functions case. Similarly, we assume for every expression E a continuous
function [[E]] : V n −→ V from the cpo V n to the discrete cpo of values.

The semantics [[S]] of a program S is given by a continuous function from the cpo V n to the lifted
cpo V n

⊥ , where we interpret ⊥ as nontermination. We write λ⊥x.e as an abbreviation for the strict
function defined by:

λy.

{
⊥ if y = ⊥
(λx.e)y otherwise.

[[skip]] = λz.(z, 0)
[[xi := F (~x)]] = λ.(〈π1, . . . , [[F ]], . . . , πn〉(z), 0)
[[S1;S2]] = λz.((λ⊥y.[[S2]](y))([[S1]](z)))

[[if B then S1 else S2]] = λz.

{
[[S1]](z) if [[B]](z) = T

[[S2]](z) if [[B]](z) = F

[[while B do S]] = fixM

where M = λf.λz.

{
(f ◦ [[S]])(z) if [[B]](z) = T

z otherwise.

In the definition of the while-loop, we use the fact that the set of continuous functions is a cpo; it
must be verified that the function M so-defined is in fact continuous on the cpo [V n −→ V n

⊥ ].

Again, the semantics of a program S is a continuous function from V n to V n
⊥ , such that if (v1, . . . , vn) ∈

V n is an initial state of the program, where variable xi initially has value vi, then we get:

• if [[S]](v1, . . . , vn) = ⊥, the program S does not terminate on those inputs;

• otherwise, [[S]](v1, . . . , vn) = (v′1, . . . , v
′
n), meaning that at the end of the execution of S,

variable xi takes value v′i.
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Categories. Our goal is to isolate the key properties of the two semantics above, in as abstract a
way as possible. Why? Because it’s fun, and because it tells us the basic structure we need when
giving a semantics to the basic constructs of IMP. That means that when we move to more involved
extensions of IMP which may require different structure to give semantics, we will know what are
the basic elements to look for to give a semantics to the IMP fragment, that is, conditionals and
loops.

A category1 C is a collection of objects (often referred to as C as well), and for each pair of objects
A,B, a collection Hom(A,B) of morphisms from A to B. A morphism f in Hom(A,B) will be

written A
f- B. Morphisms are subject to the following conditions:

(1) There is an operation ◦ on morphisms such that if A
f- B and B

g- C are morphisms,
then A

g◦f- C is a morphism. In other words, if f is a morphism in Hom(A,B) and g is a
morphism in Hom(B,C), then g ◦ f is a morphism in Hom(A,C).

(2) The operation ◦ is associative, so that if we have A
f- B, B

g- C, and C
h- D, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(3) For every object A, there is a distinguished morphism A
1A- A such that for all morphisms

A
g- B, we have g ◦ 1A = g, and for all morphisms B

h- A, we have 1A ◦ h = h.

An isomorphism f between objects A and B is a morphism A
f- B such that there exists a

morphism B
g- A with g ◦ f = 1A and f ◦ g = 1B .

Examples. Here are some examples of categories, where the objects are all sets. The crucial
thing is that the morphisms are different in each case, which means that the categories have a vastly
different feel from each other.

The category Set has sets as objects, and morphisms X
f- Y are functions f : X −→ Y . The

composition operation on morphisms is simply function composition, and the identity morphisms
are just the identity functions.

The category Setop also has sets as objects, and morphisms X
f - Y are reverse functions

f : Y −→ X . Composition is “flipped” function composition (that is, g ◦ f is the function defined
by (g ◦ f)(x) = f(g(x))), and the identity morphisms are just the identity functions.

The category Sub also has sets as objects, but now there is at most a single morphism between any
two objects, and there is a morphism X - Y if and only if X ⊆ Y . Composition is transitivity
of inclusion, and identity reflects X ⊆ X for all X .

Finally, the category Pfn also has sets as objects, and morphisms X
f- Y are partial functions

f : X ⇀ Y , as defined earlier. Composition is partial function composition; identity morphisms
1For references, see MacLane [1971], or Barr and Wells [1990].
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are identify functions. Note that every object of Set is an object of Pfn, every morphism in Set is
a morphism in Pfn, composition agrees, and identities agree; in other words, Set is a subcategory
of Pfn.

The category CPO with cpos as objects and continuous functions as morphisms can also be defined.

We will present more examples of categories in the course of these notes, as the need arise.

Products. Many constructions that can be used to construct sets can be generalized to other cate-
gories. As an example, consider the cartesian product of sets. To generalize this to other categories,
we need to isolate a property of cartesian productsa that somehow captures what’s useful about
them. It turns out that this is the fact that cartesian products have projections associated with them,
which satisfy some rules. (We will not justify why this choice of property of cartesian product is
the right one.)

A category is said to have products if for every object X and Y , there exists an object (denoted
X × Y ) and morphisms π1, π2 such that the following diagram commutes:2

Z

X �
π1�

f

X × Y

h

? π2 - Y

g

-

In other words, for all sets Z, if Z
f- X and Z

g- Y , then there exists a unique Z
h- X×Y

(typically written 〈f, g〉) such that π1 ◦ h = f and π2 ◦ h = g.

One can check that, for any two objects X and Y , there are two objects Z1 and Z2 satisfying these
properties (so that either one of them could arguably be called the product of X and Y ), then Z1

and Z2 are isomorphic, that is, there is an isomorphism from Z1 to Z2.

Examples. Justifying the choice of notation, one can check that in the category Set, the product
X × Y exists, and is simply given by the usual cartesian product:

X × Y = {(x, y) | x ∈ X, y ∈ Y }
π1(x, y) = x

π2(x, y) = y.

Given any set Z, the mediating morphism h = 〈f, g〉 from Z to X × Y is also easy to describe:

h(z) = (f(z), g(z)).

2A diagram is said to commute if, roughly, following different paths from one object to another yields equal mor-
phisms.
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To illustrate a perhaps less intuitive construction, consider the category Pfn. This category also has
products, but they are not given by the cartesian product. Indeed, given X and Y , the following set
satisfies the properties of products given above:

X × Y = (X ] Y ) ] {(x, y) | x ∈ X, y ∈ Y },

where ] is set-theoretic disjoint union, defined as follows: X ] Y = {(x, 0) | x ∈ X} ∪ {(y, 1) |
y ∈ Y }. (The choice of “tags” {0, 1} is rather arbitrary.) The projection functions are:

π1(v) =

{
x if v = ((x, 0), 0)
x if v = ((x, y), 1)

π2(v) =

{
y if v = ((y, 1), 0)
y if v = ((x, y), 1),

where dπ1e = {((x, 0), 0) | x ∈ X} ∪ {((x, y), 1) | x ∈ X, y ∈ Y } and dπ2e = {((y, 1), 0) | y ∈
Y } ∪ {((x, y), 1) | x ∈ X, y ∈ Y }. Given a set Z, the mediating morphism h = 〈f, g〉 is given by
the partial function h from Z to X × Y with support dfe ∪ dge and defined by

h(z) =


((f(z), 0), 0) if z 6∈ dge
((g(z), 1), 0) if z 6∈ dfe
((f(z), g(z)), 1) otherwise.

We also saw that the category CPO supports a notion of product. We can check that the construc-
tion we gave actually establishes that CPO has products.

Functors. We can often relate two categories C and D by mapping one to the other in a way
that preserves their structure. Since categories are characterized both by their objects and their
morphisms, these maps, called functors, need to map both objects and morphisms from C to D, in a
way that preserves the relationships between objects and morphisms.

A functor F between categories C and D, written F : C −→ D, is a pair of maps on objects and
on morphisms, both actually denoted by F , such that F maps an object X of C to an object FX

of D, and F maps a morphism X
f- Y of C to a morphism FX

Ff- FY of D, subject to the
conditions:

F (1X) = 1F (X)

F (g ◦ f) = Fg ◦ Ff.

Note that functors need not preserve further structure on the category. For instance, it need not be
the case that a functor maps products to products. (Indeed, the target category may not even have
products.)
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Examples. For any category C, the identity functor 1C is the identity on objects and the identity
on morphisms. (A functor from a category to itself is often called an endofunctor.)

As a less trivial example, recall that I said that we could view complete partial orders as adding
to sets a token denoting the value “undefined”, which lets us do away with partial functions. We
can actually make this precise, by exhibiting a functor C : Pfn −→ CPO that does just that. This
functor maps a set X in Pfn to the lifted discrete cpo X⊥. The functor maps a morphism X

f- Y
of Pfn, that is, a partial function f : X ⇀ Y , to the continuous function f ′ : X⊥ −→ Y⊥ between
the lifted discrete cpos X⊥ and Y⊥ defined as follows:

f ′(x, 0) =

{
(⊥, 1) if x 6∈ dfe
(f(x), 1) if x ∈ dfe

f ′(⊥, 1) = (⊥, 1).

(Recall that the lifted cpo X⊥ has a carrier set X ] {⊥}.) I leave it as an exercise to verify that f ′

is actually continuous, and that the functor C satisfies the required conditions.

Another functor that turns out to be important is the endofunctor from CPO to CPO that lifts
cpos. More precisely, the functor L : CPO −→ CPO maps a cpo X to the lifted cpo C⊥, and
maps a morphism X

f- Y to the morphism X⊥
Lf- Y⊥ defined by:

Lf(⊥, 0) = (⊥, 0)
Lf(x, 1) = (f(x), 1).

We can check that L in fact satisfies the functor properties.

The category of categories Functors are maps between categories. For every category C, we have
an identity functor 1C . One can also check that functors compose: if F : C −→ D and G : D −→ E
are functors, then we can define the functor GF : C −→ E in the obvious way: it maps an object X

of C to an object GFX of E , and a morphism X
f- Y of C to a morphism GFX

GFf- GFY
of E . It is an exercise to check that the functor properties are met. This forms the category Cat of
categories, which has categories as objects3 and functors as morphisms.

3There are of course some nagging issues of size at play here, the same kind that arise when forming the set of all
sets. Whatever favorite cure for the problem in set theory you may have works quite fine in this setting as well: assuming
universes, distinguishing sets and classes, etc. Refer to the literature for further discussion.
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Categories for Imperative Semantics Lecture 2
PLDG Seminar

Last time, we saw two semantics for the simple imperative programming language IMP.

S ::=
skip

xi := E

S1;S2

if B then S1 else S2

while B do S

(As we noted last time, we take expressions E and Boolean tests B as abstract elements of some
vocabulary of expressions. This lets us concentrate on modeling control flow. We do assume that E
and B are side-effect free and always terminate. We will examine E and B more carefully in future
lectures. )

Of the two semantics that we discussed last time, one was based on partial functions, where the
semantics of a program S is a partial function from the set of states to the set of states, and the
other was based on complete partial orders, where the semantics of a program S is a continuous
functions from the set of states (viewed as a partially ordered structure) to the set of states (viewed
as a partially ordered structure).

There is one obvious question lurking here: what is the commonality between those two semantics?
Put another way, these two semantics are trying to capture the operational meaning of the programs
in IMP in a mathematically convenient framework. Of course, what is convenient for one purpose
may not be convenient for another (partial functions are sometimes easier to work with than CPO’s,
and sometimes metric spaces are nicer to work with), and so it makes sense to look at what it takes
for a mathematical framework to be able to express the semantics of IMP. If we equate mathematical
frameworks with categories (a bold move), then the question above becomes: what kind of structure
does a category need to have in order to support a semantics for IMP along the lines of the partial
function semantics and the CPO-based semantics? A satisfactory answer to this question will come
in handy when we extend IMP with some interesting features like nondeterminism and probability,
and seek to develop the corresponding semantics.

Abstract semantics. So, what do we need to give a state-transition semantics to IMP, in an ab-
stract sense? In other words, what do we need from a semantic category C to act as a reasonable
category in which to give a state-transition semantics to IMP? Following the intuitions underlying
the partial functions semantics, as well as the CPO-based semantics, we assume that the variables
will take values from some space of values that correspond to an object in the category. To be
shamelessly set-theoretical, you can view such an object as consisting of the set of values that the
variable can take. For the sake of presentation, we assume that there is a single object as the space
of values, so that all the variables share a common space of values. (In other words, there is a single
type of values. It is straightforward to extend this to multiple types of values, but it does complicate
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the bookkeeping required to write down the semantics, with no real new insight.) Let X be the
object representing the space of values.

In the partial functions semantics as well as the CPO-based semantics, the state of the programs
are tuples of values, representing the values of each variable of the program at that state. The
semantics of the programs are functions from states to states. We will use this intuition as the basis
of our abstract semantics, and take the state space of programs (with n variables) to be the product
Xn = X × · · · ×X , the n-fold product of X . In order for this to make sense, we need the semantic
category to have enough structure. This is therefore our first assumption on C:

A1. C has all finite products.

(A finite product is an obvious generalization of the binary products we saw in the last lecture.)

With this assumption, we now have enough structure to give a semantics to the first few statements
of our language. Assume an appropriate semantics for expressions. More precisely, assume that
every expression E has an associated morphism Xn [[E]]- X . The following semantics is defined
for program using only variables x1, . . . , xn:

[[skip]] = 1Xn

[[xi := E]] = 〈π1, . . . , [[E]], . . . , πn〉
[[S1;S2]] = [[S2]] ◦ [[S1]]

Coproducts. To account for tests and conditionals, we need to somehow be able to talk about
choice. This turns out to be nicely captured by the notion of sums, also known as coproducts.
Coproducts are the generalization of disjoint unions for sets. (The name “coproduct” is meant to
indicate a relationship with the notion of product. Indeed, there is one, called duality, which we will
not talk about.)

A category is said to have (binary) coproducts if for every object X and Y , there exists an object
(denoted X+Y ) and morphisms ι1, ι2 such that for all Z and morphisms X

f- Z and Y
g- Z,

the following diagram commutes:

X
ι1- X + Y �

ι2
Y

Z

∃!h

?�

gf

-

In other words, for all objects Z, if X
f- Z and Y

g- Z, then there exists a unique X +
Y

h- Z (typically written [f, g]) such that h ◦ ι1 = f and h ◦ ι2 = g.
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Examples. The coproduct X + Y in Set is simply given by disjoint union of sets:

X + Y = X ] Y = {(x, 0) | x ∈ X} ∪ {(y, 1) | y ∈ Y }

The mediating morphism [f, g] is easy to characterize:

[f, g](w) =

{
f(x) if w = (x, 0)
g(y) if w = (y, 1).

The category PFn also has coproducts, which turn out to be defined the same way, using set disjoint
union.

Conditionals. In order to give a semantics to conditionals, we need a semantics for Boolean tests
B. As we did for expressions E, assume that we are given, for every test B, a morphism capturing
the meaning of B. More precisely, we take [[B]] to be a morphism Xn [[B]]- Xn + Xn. Intuitively,
[[B]] maps a state into the sum of the state spaces Xn and Xn, where the state is injected into the
left component of the sum if B is true, and into the right component of the sum if B is false. Thus,
we need the following assumption on the semantic category C:

A2. C has binary coproducts.

To capture the fact that the state is unmodified, we need to state that B acts as the “identity” on
those states. This can be captured by imposing the following condition on [[B]]:

[1Xn , 1Xn ] ◦ [[B]] = 1Xn .

(Work out the intuition underlying this definition in the category Set.) With such a semantics for
Boolean tests, we can derive the semantics of conditional statements:

[[if B then S1 else S2]] = [[[S1]], [[S2]]] ◦ [[B]]

This treatment of Boolean expressions B is not very natural. It would be more natural to capture the
semantics of a test B my mapping a state into an object “with 2 elements”, the way we did in the
semantics based on partial functions and the one based on CPO’s. This turns out to be more difficult
than expected in the setting we have been developing. We will return to this topic in a few lectures.
But first, in the next lectures, we will take care of the semantics of the while statement.
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Categories for Imperative Semantics Lecture 3
PLDG Seminar

We now consider the problem of giving an abstract semantics to the looping construct. If we look at
the semantics based on partial functions, or the one based on CPO’s, we see that the semantics of the
while loop relies on constructing a “limit” of appropriate functions from Xn to Xn (where Xn is
the state space of the program). To model this with some kind of generality, we follow the approach
systematized by Manes and Arbib [1986]. The idea is to ensure that there is enough structure to the
morphisms between objects in the semantic category to take “limits”.

Partially additive monoids. One way to capture this notion of limits is to consider partially ad-
ditive monoids. Roughly speaking, a partially additive monoid is like a monoid (that is, a set with
a single associate operation and an identity element), except that the operation is only partially
defined, and is infinitary.

First, some terminology. Let M be a fixed set. An I-indexed family in M is a function x : I −→ M ,
written {xi | i ∈ I}. We usually write xi rather than x(i). The (necessarily unique) ∅-indexed
family is called the empty family. A family {yj | j ∈ J} is said to be a subfamily of {xi | i ∈ I}
if J ⊆ I and yj = xj for all j ∈ J . A family {xi | i ∈ I} is countable if I is a countable set (that
is, finite or countably infinite). Given an index set I , the family {Ij | j ∈ J} is a partition of I if
Ij ∩ Ik = whenever j 6= k, and I = ∪j∈JIj . Note that we allow an element Ij of the partition to be
empty.

A partially additive monoid is a pair (M,Σ) where M is a nonempty set and Σ is a partial function
mapping countable families in M to elements of M (the family {xi | i ∈ I} is summable if
Σ{xi | i ∈ I} is defined) subject to the following three conditions:

(1) Partition-associativity axiom: If {xi | i ∈ I} is a countable family and {Ij | j ∈ J} is a
partition of I with J countable, then {xi | i ∈ I} is summable if and only if it the case both
that for every j ∈ J , {xi | i ∈ Ij} is summable, and {Σ{xi | i ∈ Ij} | j ∈ J} is summable.
In that case, Σ{xi | i ∈ I} = Σ{Σ{xi | i ∈ Ij} | j ∈ J}.

(2) Unary sum axiom: Any family {xi | i ∈ I} where |I| = 1 is summable, and Σ{xi | i ∈ I} =
xj if I = {j}.

(3) Limit axiom: If {xi | i ∈ I} is a couinatble family, and if the subfamily {xi | i ∈ F} is
summable for every finite set F ⊆ I , then {xi | i ∈ I} is summable.

Alternative notations for Σ{xi | i ∈ I} include Σi∈Ixi, and xi1 + xi2 + · · · + xik + . . . , if
I = {i1, . . . , ik, . . . }. This latter notation gives preference to a particular ordering of the elements
of the index set I , but by partition-associativity, this order is immaterial. We will often use + when
talking about summation of finite families.

The following result is immediate, and provides a converse to the Limit axiom.
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Theorem 1 Let (M,Σ) be a partially additive monoid. Then any subfamily of a summable family
is summable.

Proof. Immediate by Partition-associativity. Let {xi | i ∈ I} be summable, and let K ⊆ I . Define
I1 = K, I2 = I −K, so that {Ij | j ∈ {1, 2}} partitions I . By the Partition-associatitivity axiom,
{xi | i ∈ K} is summable. ut

Examples. Let X, Y be two sets and let Pfn(X, Y ) be the set of partial functions from X to
Y . For a partial function f ∈ Pfn(X, Y ), let dfe be the domain of definition of f , that is, the
set of all x ∈ X such that f(x) is defined. There are two ways of imposing a partially additive
structure on Pfn . Define the partial operation Σdi such that {fi | i ∈ I} is summable if and only if
dfie ∩ dfje = ∅ for all i 6= j, in which case take

(Σdi{fi | i ∈ I})(x) =

{
fj(x) if x ∈ dfje
undefined otherwise.

Alternatively, define the partial operation Σov such that {fi | i ∈ I} is summable if and only if
fi(x) = fj(x) for all x ∈ dfie ∩ dfje, in which case we take

(Σdi{fi | i ∈ I})(x) =

{
fj(x) if x ∈ dfje
undefined otherwise.

It is straightforward to check that both (Pfn(X ,Y ),Σdi) and (Pfn(X, Y ),Σov ) are partially addi-
tive monoids.

Zero elements. The partially additive monoids (Pfn(X, Y ),Σdi) and (Pfn(X, Y ),Σov ) have a
special element, the nowhere defined function, that can always be added to or removed from a
summable family to yield a summable family. This is a general fact about partially additive monoids.

Theorem 2 Let (M,Σ) be a partially additive monoid, and let ! : ∅ −→ M be the empty family in
M . Then 0 = Σ! exists.

Proof. Since M is nonempty, there exists x ∈ M , so by the Unary sum axiom, {x} is summable.
Since the empty familyis a subfamily of every family, including {x}, the empty family is summable
by Theorem 1. ut

Theorem 3 Let (M,Σ) be a partially additive monoid. If {xi | i ∈ I} is a summable family in M ,
J a countable set disjoint from I , and xi = 0 for i ∈ J , then {xi | i ∈ I ∪ J} is summable, and
Σ{xi | i ∈ I ∪ J} = Σ{xi | i ∈ I}.
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Proof. For j ∈ I ∪ J , define

Ij =

{
{j} if j ∈ I

∅ if j 6∈ I ,

and thus {Ij | j ∈ I∪J} partitions I . By the Partition-associativity axiom, {Σ{xi | i ∈ Ij} | j ∈ J}
is summable, and {xi | i ∈ I = Σ{Σ{xi | i ∈ Ij} | j ∈ J}. Since Σ{xi | i ∈ Ij} = xj if j ∈ I
andΣ{xi | i ∈ Ij} = 0 if j 6∈ I , we get the desired result. ut

There are no additive inverses in partially additive monoids. In fact, if x + y = 0, then x = y = 0.
More generally, we have the following result.

Theorem 4 Let (M,Σ) be a partially additive monoid, and let Σ{xi | i ∈ I} = 0. Then xi = 0 for
all i ∈ I .

Proof. By the Partition-associativity axiom, for each i ∈ I , we have xi + Σ{xj | j ∈ I − {i}} =
Σ{xi | i ∈ I} = 0; therefore, it is sufficient to prove that x = 0 whenever x + y = 0. This follows
from Theorem 3 and Partition-associativity:

x = x + 0 + 0 + . . .

= x + (y + x) + (y + x) + . . .

= (x + y) + (x + y) + (x + y) + . . .

= 0 + 0 + 0 + . . .

= 0

ut
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Categories for Imperative Semantics Lecture 4
PLDG Seminar

The reason for introducing partially additive monoids in the previous lecture is, essentially, that
to model the while loop, we require the hom-sets of the semantic category to at least have the
structure of a partially additive monoid (for a suitably defined sum operation). Recall that the hom-
set Hom(X, Y ) is the set of all morphisms from object X to object Y in a category. (Assume
that categories under considerations are such that Hom(X, Y ) is indeed a set; such categories are
sometimes called locally small.)

Partially additive structure. Let C be a category. A partially additive structure on C assigns to
every hom-set Hom(X, Y ) a partially defined operation ΣX,Y such that (Hom(X, Y ),ΣX,Y ) is a
partially additive monoid and composition distributes over ΣX,Y : if {fi | i ∈ I} is a summable
family in Hom(X, Y ), then:

• for all W and W
g- X , {fi ◦ g | i ∈ I} is summable, and (ΣX,Y {fi | i ∈ I}) ◦ g =

ΣW,Y {fi ◦ g | i ∈ I};

• for all Z and Y
h- Z, {h ◦ fi | i ∈ I} is summable, and h ◦ (ΣX,Y {fi | i ∈ I}) =

ΣX,Z{h ◦ fi | i ∈ I}.

We typically write Σ for ΣX,Y when the context makes it clear the hom-set under consideration.

Recall that partially additive monoids have zeroes. For a category with a partially additive structure,
zeroes translate into the following notion. A category C has zero morphisms if there is a distin-

guihsed morphism X
0X,Y- Y in every hom-set Hom(X, Y ) such that for all objects W,X, Y, Z

and morphisms W
f- X , Y

g- Z, the following diagram commutes:

W
f

- X

Z

0W,Z

? g
- Y.

0X,Y

?

Theorem 5 If a category has a partially additive structure, it has zero morphisms.

Proof. Take 0X,Y = ΣX,Y {}, where {} is the empty family in Hom(X, Y ). ut

Examples. The category Pfn can be given two partially additive structures, one corresponding to
the partial operation Σdi , the other to Σov . It is straightforward to check that composition distributes
over Σdi and over Σov .
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Countable coproducts. The theory we develop in the coming lectures requires a generalization
of coproducts to coutably infinite families of objects. A category has countable coproducts if for
every countable famility {Xi | i ∈ I}, there exists an object (denoted

∐
i∈I Xi and morphisms ιi

(for i ∈ I) such that for all objects Z and all families of morphisms {Xi
fi- Z | i ∈ I}, there

exists a unique f such that for all j ∈ I , the following diagram commutes:

Xj
ιj-

∐
i∈I

Xi

Z

∃!h

?

f
j

-

The mediating morphism h is typically written [fi | i ∈ I], generalizing the notation for the medi-
ating morphism of binary coproducts.

When the family {Xi | i ∈ I} is such that Xi = X for all i ∈ I , we write I ·X for
∐

i∈I Xi.

The following property of coproducts provides for an easy test of equality of morphisms with a
coproduct as domain.

Theorem 6 Let C be a category with countable coproducts, let {Xi | i ∈ I} be a countable family

of objects of C, and let Y be an object of C. If
∐

i∈I Xi
f- Y and

∐ g- Y are morphisms
such that for all j ∈ I , f ◦ ιj = g ◦ ιj , then f = g.

Proof. This follows immediately from the uniqueness of the mediating morphism for countable

coproducts. Consider the morphisms Xj
f◦ιj- Y and Xj

g◦ιj- Y . There is a unqiue morphism∐
i∈I Xi

h- Y such that h ◦ ιj = f ◦ ιj for all j ∈ I . Since both f and g clearly satisfy the
conditions for being an h, by uniqueness of h, we have that h = f = g. ut

In a category with coproducts and zero morphisms, a special class of morphisms can be defined.

Theorem 7 Let C be a category with countable coproducts and zero morphisms. For any countable
family {Xi | i ∈ I} of objects of C, there exists morphisms ρj :

∐
i∈I Xi −→ Xj for every j ∈ I

satisfying

ρj ◦ ιi =

{
1Xj if i = j

0Xi,Xj if i 6= j.

The morphisms ρj are called quasi-projections.

Proof. Fix a j ∈ I , and take ρj = [fi | i ∈ I], where {
∐

i∈I Xi
fi- Xj | i ∈ I} is the family of

morphisms where fi to be 1Xj if i = j, and 0Xi,Xj if i 6= j. ut
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Intuitively, a quasi-projection ρj takes an element of the countable coproduct, and returns the value
if it is in the jth component of the coproduct, otherwise, it is undefined (corresponds to the zero
morphism). Note that quasi-projections require zero morphisms. Thus, we cannot have quasi-
projections in Set, since Set does not have zero morphisms. In contrast, quasi-projections exist in
Pfn, which has both countable coproducts and zero morphisms.
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Categories for Imperative Semantics Lecture 5
PLDG Seminar

Partially additive categories. A partially additive category C is a category with countable co-
products and partially additive structure satisfying the following two axioms:

(1) Compatible sum axiom: If {fi | i ∈ I} is a countable familty of morphisms X
fi- Y and

there exists a morphism X
f- I · Y such that the following diagram commutes for all i

X
f

- I · Y

Y

ρi

?

f
i

-

then {fi | i ∈ I} is summable.

(2) Untying axiom: If the morphisms X
f- Y and X

g- Y are summable, then the mor-
phisms X

ι1◦f- Y + Y and X
ι2◦g- Y + Y are summable.

Intuitively, the axioms of a partially additive category relate the partially additive structure of the
category and the coproduct structure of the category. The compatible sum axiom says if a family of
morphisms can be “bundled” into the coproduct I · Y , then they are summable. The untying axiom
says that if two morphism are summable, then they are summable when they inject into the left and
right of a coproduct. The fact that the untying axiom only talks about two morphisms rather than a
countable family is not a restriction, since the following result is easy to establish.

Theorem 8 In a partially additive category, if {fi | i ∈ I} is a summable family of morphisms

X
fi- Y , then {ιi ◦ fi | i ∈ I} is a summable family of morphisms X

ιi◦fi- I · Y .

Proof. By the unary sum axiom of the partially additive structure of the category, any singleton
family is summable. It is easy to prove by induction on the size of summable families that if {fi |
i ∈ F} is a subfamily of {fi | i ∈ I} for any finite I , and hence is summable, then {ιi ◦ fi | i ∈ F}
is summable, using the untying axiom. Thus, any finite subfamily of {ιi ◦ fi | i ∈ I} is summable,
so by the limit axiom of the partially additive structure of the family, we have {ιi ◦ fi | i ∈ I} is
summable. ut

Why are partially additive categories so interesting?

(1) Morphisms into coproducts can be uniquely decomposed
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(2) The partially additive structure is unique

(3) They support a natural notion of iteration

(4) They form a natural family of traced monoidal categories [Joyal, Street, and Verity 1996],
which are useful in concurrency and topology.

Before venturing into establishing the first three points (the fourth is for edification only), we need to
highlight a few morphisms that always exist in partially additive categories (beyond zero morphisms
and quasi-projections).

Theorem 9 Let C be a category with countable coproducts and zero morphisms. Let {Xi | i ∈ I}
be a countable family of objects of C.

(1) There exists a morphism
∐

i∈I Xi
∆- I ·

∐
i∈I Xi (the diagonal injection) such that the

following diagram commutes for all j:

Xj
ιj-

∐
i∈I

Xi

∐
i∈I

Xi

ιj

?
∆

- I ·
∐
i∈I

ιj

?

In other words, an element of Xj is sent to the jth copy of
∐

i∈I Xi.

(2) If Xi = X for all i, there exists a morphism I ·X σ- X such that the following diagram
commutes for all j:

X
ιj - I ·X

X

σ

?

1
X

-

Proof. ∆ exists by the defining property of coproducts, taking ∆ = [ιi ◦ ιi | i ∈ I].

Similarly, σ exists by the defining property of coproducts, taking σ = [1X | i ∈ I]. ut

The morphisms ∆ and σ are strongly related.

Theorem 10 If C is a category with countable coproducts and zero morphisms, and {Xi | i ∈ I}
is a countable family of objects of C, then σ ◦∆ = 1‘

i∈I Xi
.
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Proof. By Theorem 6, it suffices to show that for all j, σ ◦ ∆ ◦ ιj = 1‘
i∈I Xi

◦ ιj . For any j, the
following diagram is easily seen to commute (and since every square4 in the diagram commutes):

Xj
ιj-

∐
i∈I

Xi

∐
i∈I

Xi

ιj

?
∆
- I ·

∐
i∈I

Xi

ιj

?
σ

-
∐
i∈I

Xi

1 ‘
i∈

I X
i-

Alternatively, we can derive that

σ ◦∆ ◦ ιj = σ ◦ (ιj ◦ ιj)
= 1‘

i∈I Xi
◦ ιj .

For such simple equalities, the diagram proof is much more convenient. ut

Theorem 11 (Decomposition) Let C be a partially additive category. If X
f-

∐
i∈I Yi be a

morphism in C, then there is a unique family {fi | i ∈ I} of morphisms X
fi- Yi such that

f =
∑

i∈I ιi ◦ fi, namely, fi = ρi ◦ f .

Proof. Let fi = ρi ◦ f .

(1) The first step of the proof is to check that {ιi ◦ fi | i ∈ I} is summable. By the compatible sum
axiom, it suffices to show that there exists an h such that the following diagram commutes:

X
h
- I ·

∐
i∈I

Yi

∐
i∈I

Yi

ρj

?

ιj ◦
f
j -

The morphism ∆ ◦ f is such an h.

We first prove that
ιj ◦ ρj = ρj ◦∆. (1)

By Theorem 6, it suffices to show that for all k, ιj ◦ρj ◦ ιk = ρj ◦∆◦ ιk. We show this for the cases
where k 6= j and k = j, by exhibiting appropriate commutative diagrams. If k 6= j, the following

4Including triangles...
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diagram commutes because all squares commute:∐
i∈I

ρj - Yj

Yk

ιk
6

ιk -

0
-

∐
i∈I

Yi
0

-
∐
i∈I

ιj

-

∐
i∈I

Yi

ιk

?
∆
- I ·

∐
i∈I

Yi

ιk

?

ρ j

-

Similarly, if k = j, the following diagram commutes because all squares commute:∐
i∈I

ρj - Yj

Yj

ιj
6

ιj -

1
-

∐
i∈I

Yj
1

-
∐
i∈I

ιj

-

∐
i∈I

Yi

ιj

?
∆
- I ·

∐
i∈I

Yi

ιj

?

ρ j

-

With (1), it is easy to see that ∆ ◦ f satisfies the prerequisites of the compatible sum axiom:

X
f

-
∐
i∈I

Yi
∆
- I ·

∐
i∈I

Yi

Yj

ρj

? ιj -

f
j

- ∐
i∈I

Yi

ρj

?

(The square on the left is the definition of fj , while the square on the right is just equation (1).)

(2) Similarly, we can show that the family {ρi | i ∈ I} is summable. Again, by appealing to
the compatible sum axiom, taking 1I·

‘
i∈I Yi

as the required morphism. Therefore,
∑

i∈I ρi exists,
and thus by the untying axiom,

∑
i∈I ιi ◦ ρi exists. We show that

∑
i∈I ιi ◦ ρi = 1I·

‘
i∈I Yi

. By
Theorem 6, it suffices to show (

∑
i∈I ιi ◦ ρi) ◦ ιj = 1I·

‘
i∈I Yi

◦ ιj . This is a straightforward
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application of distributivity and properties of zero morphisms:

(
∑
i∈I

ιi ◦ ρi) ◦ ιj =
∑
i∈I

(ιi ◦ ρi ◦ ιj)

=
∑
i6=j

(ιi ◦ 0) + 1 ◦ ιj

=
∑
i6=j

(0 ◦ ιi) + 1 ◦ ιj

= ((
∑
i6=j

0) + 1) ◦ ιj

= 1 ◦ ιj .

(3) Finally, we can show that f =
∑

i∈I ιi ◦ fi using Theorem 10:

f = σ ◦∆ ◦ f

= σ ◦ 1 ◦∆ ◦ f

= σ ◦ (
∑
i∈I

ιi ◦ ρi) ◦∆ ◦ f

=
∑
i∈I

σ ◦ ιi ◦ ρi ◦∆ ◦ f

=
∑
i∈I

1 ◦ ιi ◦ ρi ◦ f

=
∑
i∈I

ιi ◦ fi.

Uniqueness is easy to check; if f =
∑

i∈I ιi ◦ gi, then

fj = ρj ◦ f

= ρj ◦ (
∑
i∈I

ιi ◦ gi)

=
∑
i∈I

(ρj ◦ ιi ◦ gi)

= gj .

ut
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Categories for Imperative Semantics Lecture 6
PLDG Seminar

We now prove the remaining two properties of partially additive categories, namely that the partially
additive strutcure is unique, and that there is a natural notion of iteration that can be defined.

Theorem 12 (Uniqueness) The Σ operation of a partially additive category is unique, as follows:
if C is a partially additive category, then {fi | i ∈ I} in Hom(X, Y ) is summable if and only if it is

compatible; in that case, the morphism X
f- I ·Y with ρi◦f = fi is unique, and

∑
i∈I fi = σ◦f .

Proof. If {fi | i ∈ I} is compatible, then it is summable by a direct application of the compatible
sum axiom. Conversely, suppose

∑
i∈I fi exists. By the untying axiom, f =

∑
i∈I ιi ◦ fi exists,

and we can check that

ρj ◦ f = ρj ◦ (
∑
i∈I

ιi ◦ fi)

=
∑
i∈I

ρj ◦ ιi ◦ fi

= fj .

Therefore, by the compatible sum axiom, {fi | i ∈ I} is summable.

To see that the morphism f is unique, note that if we have morphisms X
f- I ·Y and X

g- I ·Y
both satisfying ρi ◦ f = fi = ρi ◦ g, then by the Decomposition theorem, {fi | i ∈ I} is the unique
family such that f =

∑
i∈I ιi ◦ fi and g =

∑
i∈I ιi ◦ fi, so that f = g.

Finally, note that

σ ◦ f = σ ◦
∑
i∈I

ιi ◦ fi

=
∑
i∈I

σ ◦ ιi ◦ fi

=
∑
i∈I

1 ◦ fi

=
∑
i∈I

fi.

ut

Theorem 13 (Iteration) Given a morphism X
f- X + Y in a partially additive category, then

there exists morphisms X
f1- X and X

f2- Y such that f = ι1 ◦ f1 + ι2 ◦ f2 and the sum

f † =
∑

{f2 ◦ f i
1 | i ∈ N}

exists, where f0 = 1 and f i+1 = f ◦ f i.
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Proof. The required f1 and f2 exist by the Decomposition theorem.

We first establish the following preliminary result: for any morphism X
g- Y , the sum (g ◦f1)+

f2 exists. This result follows by observing that

[g, 1Y ] ◦ f = [g, 1Y ] ◦ (ι1 ◦ f1 + ι2 ◦ f2)
= [g, 1Y ] ◦ ι1 ◦ f1 + [g, 1Y ] ◦ ι2 ◦ f2

= g ◦ f1 + 1Y ◦ f2

= (g ◦ f1) + f2.

To show that f † exists, it is sufficient, by the limit axiom for partially additive monoids, to show that
every for every finite subset F ⊆ N, {f2 ◦ f i

1 | i ∈ F} is summable. Since for every finite subset
F ⊆ N there is an n such that F ⊆ {0, 1, . . . , n}, and since every subfamily of a summable family
is summable, it is sufficient to show that every family of the form {f2 ◦ f i

1 | i ∈ {0, 1, 2, . . . , n}}
is summable. We can show this easily by induction. By the unary sum axiom, f2 = f2 ◦ f0

1

is summable. The inductive step is straightforward. Assume that f2 ◦ fn
1 + f2 ◦ fn−1

1 + · · · +
f2 ◦ f1 + f2 is summable. Taking this expression as g in the preliminary result above, we get
that (f2 ◦ fn

1 + · · · + f2 ◦ f1 + f2) ◦ f1 + f2 exists. By distributivity of ◦ over +, we get that
f2 ◦ fn+1

1 + · · ·+ f2 ◦ f2
1 + f2 ◦ f1 + f2 exists, as required. ut

The f † operation can be understood as computing a fixed point of a particular iterative process
expressed by the morphism X

f- X + Y . Intuitively, the process arises as follows. From X , the
morphisms f either gives yields something in X , or something in Y . If it yields something in X ,
we can apply f again, otherwise, we’re done with a value in Y . Thus, the result of the process is
a morphism from X to Y , which may be the zero morphism if the process never terminates. This
view of iteration is due to Elgot [1975], and has been studied extensively by Bloom and Esik [1993].
We will soon see how this pertains to modeling the while loop in IMP. First, let us formally establish
the relevant properties of f †.

Theorem 14 Let C be a partially additive category, let f be a morphism X
f- X + Y , and let

f1, f2, f
† be as in the Iteration theorem.

(1) The equation (f † ◦ f1) + f2 holds.

(2) The morphism f † is a solution to the Elgot equation [ξ, 1Y ] ◦ f = ξ, where X
ξ- Y .

Proof. Two straightforward computations:

f † ◦ f1 + f2 = (
∑
i∈N

f2 ◦ f i
1) ◦ f1 + f2

= (
∑
i∈N

f2 ◦ f i+1
1 ) + f2
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=
∑
i∈N

f2 ◦ f i
1

= f †

[f †, 1Y ] ◦ f = [f †, 1Y ] ◦ (ι1 ◦ f1 + ι2 ◦ f2)

= [f †, 1Y ] ◦ ι1 ◦ f1 + [f †, 1Y ] ◦ ι2 ◦ f2

= f † ◦ f1 + 1Y ◦ f2

= f † ◦ f1 + f2.

ut

Semantics of the while loop. We now have all the ingredients to complete out semantics for IMP
(finally!). To interpret the while loop, we make the following assumption on the semantic category
C:

A3. C is a partially additive category.

Since a partially additive category has countable coproducts, property A3 implies property A2.

Recall that the state space of a program is represented by the object Xn in the category C, and that a
Boolean express B is interpreted by a morphism Xn [[B]]- Xn +Xn. A single iteration of the while
loop while B do S can be interpreted by the morphism Xn [[B]]- Xn + Xn [ι1◦[[S]],ι2]- Xn + Xn,
where the result is injected on the left of the coproduct if the iteration is performed, and in the right
of the coproduct if the iteration was not performed (because the condition was false). Following
the intuition underlying the Iteration theorem, we should be able to use the ·† operation to find a
fixed-point for applying these iterations. Thus, we take the semantics of the while loop as:

[[while B do S]] = ([ι1 ◦ [[S]], ι2] ◦ [[B]])†.

To convince ourselves that the above sematnics works, we should check that it satisfies the fixed
point property of the while loop: if B is true, then [[while B do S]] should be the same as
[[S; while B do S]]. If B is false, then [[while B do S]] should be the same as [[skip]]. Equa-
tionally, this means that we want:

[[[while B do S]] ◦ [[S]], 1] ◦ [[B]] = [[while B do S]]. (2)

Now, by Theorem 14, taking f = [ι1◦[[S]], ι2]◦[[B]] and f † = [[whileB do S]] in the Elgot equation
gives us:

[[[while B do S]], 1] ◦ [ι1 ◦ [[S]], ι2] ◦ [[B]] = [[while B do S]]. (3)
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Therefore, to establish (2), it suffices to show that [[[whileB do S]], 1]◦[ι1◦[[S]], ι2] = [[[whileB do S]]◦
[[S]], 1]. This is established by constructing the following commutative diagram, where all squares
can easily be seen to commute.

Xn ι1- Xn + Xn

Xn

[[S]]

? ι1- Xn + Xn

h1

?
�
ι2

Xn

�

ι2

Xn

h2

?�

1

[[while
B
do

S]]
-

where h1 = [ι1 ◦ [[S]], ι2] and h2 = [[[while B do S]], 1]. Note that by the property of coproducts,

there is a unique morphism Xn + Xn h- Xn (namely, [[[while B do S]] ◦ [[S]], 1]) such that
h ◦ ι1 = [[while B do S]] ◦ [[S]] and h ◦ ι2 = 1. Since, according to the above diagram, the
morphism h2 ◦h1 has those properties, we get that h2 ◦h1 = h, that is, [[[while B do S]]◦ [[S]], 1] =
[[[while B do S]], 1] ◦ [ι1 ◦ [[S]], ι2], as required.
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Categories for Imperative Semantics Lecture 7
PLDG Seminar

Up until now, we have focused on describing a categorical semantics for IMP. We have done fairly
well: any category satisfying axioms A1–3 can be used to give a state-transition semantics to IMP.

There are, however, a number of little difficulties that need to be resolved. These lead to important
insight. Recall the partial function semantics of IMP. We assumed that basic expressions E are not
partial, but always return a value; that is, [[E]] is assumed to be a total function from Xn to X . This
is one aspect that we have not captured in our categorical semantics; there is no easy way to say that
the morphisms associated with [[E]] are in some sense “total”.

There are a number of ways of addressing this problem. Here is one. Intuitively, we can think
of a partial function as total functions over sets with a distinguished element ⊥ representing the
value “undefined”. So, one approach would be as follows: starting with a base category C to give
semantics to expressions (where every morphism is assumed total), extend it to a category D where
objects are extended with an “undefined” element. If we do this right, we can get C embedded in D,
so that expressions can be given a semantics in C, while statements (which can be partially defined
due to the presence of the while loop) can be given semantics in D.

Before being able to do this, we need a number of concepts. As the plan above shows, we need to
be able to relate categories. This is what the notion of functor is all about. Recall that a functor
F : C −→ D is a map from objects of C to objects of D and from morphisms of C to morphisms of
D such that if X

f- Y is a morphism in C, then FX
Ff- FY is a morphism in D, subject to

F (1X) = 1FX and F (g ◦ f) = Fg ◦ Ff .

Examples. The following functors are well known. The functor I : Set −→ Set is defined as
follows:

IX = X ] {⊥}

(If)(x) =

{
f(x) if x 6= ⊥
⊥ if x = ⊥.

(The notation x 6= ⊥ and x = ⊥ is a simplified way to express the check that x is different or equal
to the new value ⊥ adjoined to the set X; a more careful statement would depend on the definition
of ].) Thus, IX adjoins a new element ⊥ to the set X , and the map If carries ⊥ to ⊥, otherwise
acts as f .

The functor P : Set −→ Set is defined as follows:

PX = {W | W ⊆ X}
(Pf)(W ) = {f(x) | x ∈ W}.

The functor P is called the powerset functor, as it associates to every set X its powerset.
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Interestingly, there is a relationship between the functors I and P . Consider a set X . For sim-
plicity, take X = {x1, x2, . . . , xn}. (The argument goes through for arbitrary X .) We have
IX = {x1, . . . , xn,⊥}. There is a way to map this set IX into PX that in some sense pre-
serves the behaviour of the set (with respect to morphisms), by mapping an element xi into {xi},
and ⊥ into ∅. This map is defined uniformly for all sets X . Such a relationship between functors,
that lets one map the image of an object under one functor into its image under the other functor in
a uniform way, is an important concept in category theory, that we presently define.5

Natural transformations. Given two functors F : C −→ D and G : C −→ D, a natural trans-
formation η between F and G, written η : F

·−→ G, is a family FX
ηX- GX of morphisms of

D indexed by objects of C, such that for every morphism X
f- Y in C, the following diagram

commutes:

FX
ηX - GX

FY

Ff

? ηY - GY.

Gf

?

Thus, a natural transformation η tells us how to map the image of object X under F into its image
under G, via the morphism FX

ηX- GX .

Note in passing that is we take all functors from C to D (for fixed C and D) and natural transforma-
tions between them, this forms a category.

Example. We can check that the relationship between I and P alluded to above is in fact a natural
transformation. Define η : I

·−→ P by taking the morphism ηX (which is a function from X ]{⊥}
to the powerset of X) as:

ηX(x) =

{
{x} if x 6= ⊥
∅ if x = ⊥.

To prove that η forms a natural transformation, let X
f- Y be a morphism in Set. We check that

the appropriate diagram commutes, that is, for all x ∈ X ∪ {⊥}, ηY ((If)(x)) = (Pf)(ηX(x)).
We check this for x 6= ⊥ first: ηY ((If)(x)) = ηY (f(x)) = {f(x)}, and (Pf)(ηX(x)) =
(Pf)({x}) = {f(x)}, as required. If x = ⊥, we have: ηY ((If)(⊥)) = ηY (⊥) = ∅, and
(Pf)(ηX(⊥)) = (Pf)(∅) = ∅, as required. Thus, η is a natural transformation from I to P .

Monads. The motivation for introducing natural transformations is really to get at the next con-
cept, that of a monad. Recall that our goal is to start with a category C representing the semantics
of expressions, and to derive from this a category D that includes C in some sense, but where every

5According to Saunders Mac Lane, category theory was in fact developed in order to make this concept precise.
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object is extended with an undefined element, that will let us interpret nontermination. Focusing on
Set as the base category for the semantics of expression, we see that the functor I given above es-
sentially does part of the job; it adds to every object a new element ⊥ that we are free to interpreted
as the undefined element. However, we still need to turn this into a category. Just having a functor
is not quite enough. We need more structure. And this is what a monad gives us: enough structure
to derive a category from a functor.6

First, some terminology. A functor F : C −→ C is often called an endofunctor. For any category
C, the identify functor 1C is well-defined. Let F,G : C −→ D be functors, and η : F

·−→ G
be a natural transformation. If T : C −→ C is an endofunctor, define the natural transformation
ηT : FT

·−→ GT by taking ηTX = ηTX ; if S : D −→ D is an endofunctor, define the natural
transformation Sη : SF

·−→ SG by taking SηX = S(ηX). It is easy to check that ηT and Sη are
natural tranformations.

A monad (also called a triple) in a category C is a triple (T, η, µ), where T : C −→ C is an
endofunctor, and η : 1C

·−→ T and µ : TT
·−→ T are natural transformations satisfying

1 ◦ T
ηT

- TT �
Tη

T ◦ 1

T

µ

?�

11
-

TTT
Tµ

- TT

TT

µT

? µ
- T.

µ

?

(These laws bear a relationship with monoid laws; intuitively, a monad is a monoid in the category
CC of endofunctors on C, hence the name.)

Examples. It is easy to check that (I, η, µ) is a monad in Set, where ηX : X −→ X ∪ {⊥} and
µX : (X ] {⊥1}) ] {⊥2} −→ X ] {⊥3}, if we take:

(ηX)(x) = x

(µX)(x) =

{
x if x 6= ⊥1, x 6= ⊥2

⊥3 otherwise.

Similarly, it is easy to check that (P, η, µ) is a monad in Set, if we take:

(ηX)(x) = {x}
(µX)(W ) = ∪W.

6The use of monads in semantics goes back to Moggi [1989], who was the first to realize that they could be used to
model effects in semantics. This was put to good use in the context of functional programming by Wadler [1992].

29



Kleisli categories. Why are monads interesting? Among other things, because they let us derive
new categories from existing categories.

Let C be a category and let (T, η, µ) be a monad in C. Construct the category CT , called the Kleisli
category of the monad T as follows:

• the objects of CT are simply the objects of C;

• a morphism X
f- Y in CT is a morphism X

f- TY in C.

In order for CT to be a category, it needs to have identity morphisms and a composition operator.
The natural transformations η and µ in the monad basically give us these two things. (Which is why
it was not sufficient to have a functor to be able to derive the category.) More precisely, ηX tells
us that for every object X , there is a morphism X

ηX- TX in C, and thus, there is a morphism
X

ηX- X in CT , as required. Composition is more interesting. Suppose we have X
f- Y and

Y
g- Z in CT ; we want a way to define g ◦ f so that X

g◦f- Z. Consider the corresponding
X

f- TY and Y
g- TZ in C, and the chain:

X
f- TY

Tg- TTZ
µZ- TZ,

which is a morphism of the required form. Thus, we can take g ◦ f in CT to be µZ ◦ Tg ◦ f . Using
the monad laws, we can verify that identity and composition behave as they should in CT , and that
CT is indeed a category.

A bit of work shows that the Kleisli category of (I, η, µ) on Set is simply PFn, the category
of partial functions. This gives us a systematic way of deriving PFn from Set, by adjoining an
“undefined” element to each set in Set. As it turns out, many interesting categories in semantics
are Kleisli categories of suitable monads.
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Categories for Imperative Semantics Lecture 8
PLDG Seminar

In the past few lectures, we have derived properties for ensuring that a category can be used to
give a transition-based semantics to IMP, and gave the semantics in abstract terms based on these
properties. This means, concretely, that if we can establish that a particular category has these
properties, then we can immediately derive how IMP can be interpreted in that category. But how
do you choose a category to start with? Often, this happens when the language has an extension to
IMP that requires a particular category to interpret it. By using the abstract semantics, the recipe is to
come up with a category to model the addition to IMP, and ensure that the category satisfies axioms
A1–3 gives earlier, from which the semantics of the IMP fragment can be derived immediately. We
examine two such examples in this lecture.

Nondeterministic choice. Consider the following extension to IMP:

S ::=
skip

xi := e

S1;S2

if B then S1 else S2

while B do S

S1 + S2

The additional statement S1 +S2 is meant to be interpreted as: “choose nondeterministically which
statement to execute, S1 or S2.” We want a category in which to interpret such statements.

Recall that one semantics for IMP that we gave way back in the first lecture was in terms of partial
functions between sets, where such a function maps the current state to the potential next state
obtained by executing the statement (if the statement ever terminates). We can do something similar
here, but we need to associate not a next state to the current state and the program, but rather a set of
states, those that possibly can be reached by executing the program; because of the nondeterministic
choice, many states can be considered as the next state.

The category of sets with relations. Define Rel to be the category with objects sets (just like
Set), but where a morphism X

R- Y is a relation R ⊆ X × Y . If we define the identity
morphism X

1X- X as the identity relation 1X = {(x, x) | x ∈ X} and define composition
S ◦R = {(x, z) | ∃y.(x, y) ∈ R, (y, z) ∈ S}, it is easy to check that this forms a category.

Properties. We can check that Rel has all finite products (products are given by disjoint unions),
and is a partially additive category (coproducts are given by disjoint unions, just like in Set, and
the partially additive structure is given by defining

∑
{Ri | i ∈ I} = ∪i∈IRi). Moreover, it is easy
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to check that Rel is the Kleisli category of the powerset monad P defined in the last lecture, that is,
Rel is just SetP .

Semantics of extended IMP. We can use the fact that Rel satisfies axioms A1–3 to give a seman-
tics to the IMP fragment of our extended IMP, and use the features of the particular category to give
a semantics to S1 + S2. Again, let X be the object in Rel representing the values of the variables,
and assume appropriate morphisms to give a semantics [[B]] and [[E]].

[[skip]] = 1Xn

[[xi := E]] = 〈π1, . . . , [[E]], . . . , πn〉
[[S1;S2]] = [[S2]] ◦ [[S1]]
[[if B then S1 else S2]] = [[[S1]], [[S2]]] ◦ [[B]]

[[while B do S]] = ([ι1 ◦ [[S]], ι2] ◦ [[B]])†

[[S1 + S2]] = [[S1]] ∪ [[S2]].

Thus, the semantics of S1 + S2, in this category, relies on the fact that the morphisms are just
sets of tuples in the relation. If we compute, say, what the morphism corresponding to the while
loop actually looks like in Rel, then we get the well-known relation corresponding to the reflexive
transitive closure of [[S]] subject to the restriction that the final state does not satisfy the test B.

Probabilistic choice. As a different but somewhat related extension, consider extending IMP with
a probabilistic choice:

S ::=
skip

xi := e

S1;S2

if B then S1 else S2

while B do S

S1 +p S2

Here, S1 +p S2 is meant to be interpreted as: “execute S1 with probability p, and execute S2 with
probability 1− p.”. We again want a category in which to interpret such statements.

The intuition is quite similar to that of the nondeterministic-choice extension seen above. Roughly
speaking, instead of associating with a statement a function from the current state to a set of possible
states, we associate with a statement a measure that gives the probability, from any current state, of
reaching a state in a set of possible state. (See Kozen [1981, 1985] for a direct account of such a
semantics and the basic motivation.)

To do this, rather than take a category based on sets as a base category, we take a category based
on measurable spaces.7 Recall that a measurable space is a pair (X,M) where X is a set, and M

7See Billingsley [1995], for instance.
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is a σ-algebra of subsets of X , that is, M is closed under complements and countable unions. A
function f : (X,M) −→ (Y,N ) between measurable spaces is measurable if f−1(E) ∈M for all
E ∈ N . A probability measure µ on (X,M) is a function µ : M −→ [0, 1] such that µ(X) = 1
and for E1, E2, . . . a countable sequence of disjoint sets in M, µ(∪i<ωEi) =

∑
i<ω µ(Ei). A

subprobability measure is like a probability measure, except that we only require µ(X) ≤ 1.

The category of stochastic relations. Define SRel to be the category with objects measurable
spaces and where a morphism (X,M)

f- (Y,N ) is a regular conditional subprobability measure,
that is, a function f : X ×N −→ [0, 1] such that

(1) for each fixed B ∈ N , the function f(·, B) is measurable;

(2) for each fixed x ∈ X , f(x, ·) is a subprobability measure on (Y,N ).

The identity morphism is the so-called Dirac delta function, the function δ defined by

δ(x,A) =

{
1 if x ∈ A

0 otherwise.

The composition rule is as follows. Suppose that (X,M)
f- (Y,N ) and (Y,N )

g- (Z,O).
Define g ◦ f by

(g ◦ f)(x,C) =
∫

Y
g(y, C)f(x, dy).

Recall that f(x, ·) is a subprobability measure, so the above is an integral with respect to a measure,
in the measure-theoretic sense. It is a straightforward exercise in measure theory to check that SRel
is in fact a category. See Panangaden [1999] for the details. One way to think of this category is
as a category of a form of Markov chains, where the space space is arbitrary. If we restrict to finite
spaces and take the set of all subsets as the measurable sets, then a morphism becomes simply a
stochastic matrix, and composition is matrix mulitplication. (Because of this, the morphisms above
are sometimes called Markov kernels, a generalization of stochastic matrices, modulo the fact that
they define subprobability measures rather than probability measures.)

It is an interesting exercise to prove that SRel has finite products (obtained by taking the prod-
uct of measurable spaces), countable coproducts (obtained by taking the disjoint union of mea-
surable spaces with the σ-algebra generated by the measurable sets of each summand), and is a
partially additive category (where the partially additive structure is given by defining (

∑
{fi | i ∈

I})(x,A) =
∑

i∈I fi(x,A), as long as the result is a subprobability measure, that is, as long as∑
i∈I fi(x,A) ≤ 1 for all x and A) [Panangaden 1999; Haghverdi 2000].

It turns out that SRel is also a Kleisli category for a monad related to the powerset monad. The
monad (Π, η, µ), a variant of a monad originally described by Giry [1981], is defined as follows.
Let Meas be the category of measurable spaces, with objects measurable spaces, and morphisms
measurable functions. The endofunctor Π : Meas −→ Meas associates to every measurable space
(X,M) the set of all subprobability measures {ν | ν is a subprobability measure on (X,M)},
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equipped with the least σ-algebra such that all the functions pA (for A ∈ M) given by pA(ν) =

ν(A) are measuable. The natural transformation η is given by the morphisms (X,M)
ηX- Π(X,M)

defined by
ηX(x,A) = δ(x,A)

and the natural transformation µ is given by the morphisms ΠΠ(X,M)
µX- Π(X,M) defined by

µX(Σ, B) =
∫

Π(X,M)
pBΣ.

(See Giry [1981] or Panangaden [1999] for careful motivation of these definitions.)

Semantics of extended IMP. Here again, we can use the fact that SRel satisfies axioms A1–3 to
give a semantics to the IMP fragment of our extended IMP, and use the features of SRel to give a
semantics to S1 +p S2. Let X be the object in SRel representing the values of the variables (notice
that this is now a measurable space), and assume appropriate morphisms to give a semantics [[B]]
and [[E]].

[[skip]] = 1Xn

[[xi := E]] = 〈π1, . . . , [[E]], . . . , πn〉
[[S1;S2]] = [[S2]] ◦ [[S1]]
[[if B then S1 else S2]] = [[[S1]], [[S2]]] ◦ [[B]]

[[while B do S]] = ([ι1 ◦ [[S]], ι2] ◦ [[B]])†

[[S1 +p S2]](x,A) = p[[S1]](x,A) + (1− p)[[S2]](x,A).

Thus, the semantics of S1 +p S2, in this category, relies on the fact that the morphisms are just
regular conditional subprobability measures. If we compute what the morphisms above actually
look like in SRel, then we recover the semantics due to Kozen [1981, 1985].

We can also accomodate, with this semantics, an expression in E such as random , which returns a
random value (assume that the space of values X is finite for this to really make sense). This sim-
ply calls for associating a morphism (Xn,Mn)

[[random]]- (X,M) defined by [[random]](x,A) =
|A|/|X|.
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