
Object-Oriented Design Lecture 13
CSU 370 Fall 2008 (Pucella) Friday, Oct 31, 2008

Laziness

For this lecture, I want to return to something that came up during the last homework,
the third homework where you had to implement pictures. It is a sufficiently common
phenomenon that we should make it precise.

A Slight Detour

First, a slight detour to talk about functional iterators, again. It’s amazing how much
mileage we can get out of this simple concept.

We’ve implemented functional iterators for Stacks a few times, you’ve implemented picture
iterators. We’re pros. But man, what work. If we follow the recipe to the letter, we get a
concrete subclass for every creator for our ADT, and each concrete subclass has a method
getFuncIterator that gives us back an iterator specific for the kind of data embodied by
the concrete subclass. (See Lecture 11 for the Stack example.) That’s a lot of classes to
write. And the iterators are not doing things very much different than the class itself.

This general approach of having a getFuncIterator works well in general, and is doubly
interesting for actual Java iterators, as we’ll see. But if we have functional iterators and
especially if we have immutable classes we want to iterator over, we can sometimes do
something a bit more clever.

Instead of having a method getFuncIterator that extracts an iterator for an instance of an
ADT, we can have an instance of the ADT itself act as an iterator. Let’s do this for stacks.

Here is the specification I have in mind:

public static Stack empty ();

public static Stack push (Stack, int);

public boolean isEmpty ();

public int top ();

public Stack pop ();

public String toString ();

public boolean hasElement ();

public Integer current ();

public FuncIterator<Integer> advance ();

empty().isEmpty() = true
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push(s,i).isEmpty() = false

push(s,i).top() = i

push(s,i).pop() = s

empty().toString() = "<bottom of stack>"

push(s,i).toString() = i + " " + s.toString()

empty().hasElement() = false

push(s,i).hasElement() = true

push(s,i).current() = i

push(s,i).advance() = s

Note that stacks directly implement the FuncIterator<Integer> interface. Note also that
the advance method is required to return a FuncIterator<Integer>. It is perfectly fine to
return a stack here (see the specification for push(s,i).advance() because a stack will be
a subclass of FuncIterator<Integer>, and subclassing says that it’s fine to return a class
that is more precise than a class you are expecting to return. (Can you reason out why?)

Here is the corresponding implementation:� �
// Stack ADT with iterators

public abstract class Stack implements FuncIterator<Integer> {

public static Stack emptyStack () {

return new EmptyStack ();

}

public static Stack push (Stack s, int i) {

return new PushStack (s,i);

}

public abstract boolean isEmpty ();

public abstract int top ();

public abstract Stack pop ();

public abstract String toString ();

public abstract boolean hasElement ();

public abstract Integer current ();

public abstract FuncIterator<Integer> advance ();

}

// Concrete subclass for empty()

//

class EmptyStack extends Stack {

public EmptyStack () { }
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public boolean isEmpty () { return true; }

public int top () {

throw new IllegalArgumentException ("in EmptyStack.top()");

}

public Stack pop () {

throw new IllegalArgumentException ("in EmptyStack.pop");

}

public String toString () { return "<bottom of stack>"; }

public boolean hasElement () { return false; }

public Integer current () {

throw new IllegalArgumentException ("in EmptyStack.current()");

}

public FuncIterator<Integer> advance () {

throw new IllegalArgumentException ("in EmptyStack.advance()");

}

}

// Concrete subclass for push()

//

class PushStack extends Stack {

private int topVal;

private Stack rest;

public PushStack (Stack s, int v) {

topVal = v;

rest = s;

}

public boolean isEmpty () { return false; }

public int top () { return this.topVal; }

public Stack pop () { return this.rest; }

public String toString () { return this.top() + " " + this.pop(); }
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public boolean hasElement () { return true; }

public Integer current () { return new Integer (this.topVal); }

public FuncIterator<Integer> advance () { return this.rest; }

}� �
Note that we need the current method to return an Integer, that is, a boxed integer
(wrapped inside a class) because FuncIterator<T> requires T to be a class type. That’s an
annoyance we have to deal with.

Streams

Back to what I really wanted to talk about.

In the homework, you had to define pictures. The key operation pictures was to draw them.
Creators were provided to let you build more complicated pictures from simpler ones.

One question I was asked quite a few times is when the lines are computed. Let’s pick an
example. A basic picture is a grid. The flip operation takes a picture and produces a new
“flipped” picture. Now, when we flip a grid, do we go in an actual do the flipping of the lines
in the grid? If we flip a more complex picture, do we go into the picture, and flip all the
grids inside it? That turns out to be very hard to get right. If you tried it, you know what
I mean. If not, then try to think how that would work. In fact, the problem is that if we
flip a rotated picture, we need to flip all the lines that have been rotated in the underlying
grids.

The alternative is to be lazy. We do not do any work when creating a flipped picture. We
simply record the underlying picture to be flipped. The work gets done if it’s need, when
we are asked to draw the flipped picture. Happily enough, this is exactly what comes out of
the recipe I gave you. Here is the concrete subclass corresponding to the flip creator that
my implementation uses:� �

... in the abstract Picture class:

public static Picture flip (Picture p) {

return new PicFlip(p);

}

...

class PicFlip extends Picture {

private Picture pic;

public PicFlip (Picture p) {
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pic = p;

}

public void draw (Point a, Point b, Point c) {

this.pic.draw(a.add(b),b.scale(-1),c);

}

}� �
Amazingly simple. No work to be done when we construct a flipped picture. The work is
done when we draw, and even then, it’s not an amazing amount of work, because of the way
we can use bounding boxes.

This general approach, only doing the work when it’s needed, and not at creator-invocation
time, is called lazy construction, or just plain laziness. (In contrast, if we build something
at creator-invocation time, we often call it eager construction.)

Laziness is very powerful. In particular, it lets us work with infinite data rather straight-
forwardly. The classical example of infinite data is streams, which you can think of infinite
lists. Of course, you cannot simply represent an infinite list directly by listing all its ele-
ments. Instead, a stream can be thought of simply as a “promise” to deliver its elements, if
you ask for them. If you ask for the first 10 elements of the stream, it will compute them,
and then give them to you. If you ask for the 200th element of the stream, it will compute
it and give it to you. Until you ask for it, though, it is not explicitly represented. Just like
in the pictures case, we can also create new streams from old streams, and here again, we
do not do any work at creation time, only when we ask for elements of the stream.

We implement the following interface for streams:

public static Stream Cons (int, Stream);

public static Stream Tail (Stream);

public static Stream IntsFrom (int, Stream);

public static Stream Sum (Stream, Stream);

public static Stream Filter (Predicate<Integer>, Stream);

public boolean hasElement ();

public Integer current ();

public FuncIterator<Integer> advance();

// other operations?

// public boolean equals (Object);

// public String toString ();

Note that we have streams be their own iterators, following our approach above.� �
public abstract class Stream implements FuncIterator<Integer> {
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public static Stream cons (int i, Stream s) {

return new StreamCons(i,s);

}

public static Stream tail (Stream s) {

return new StreamTail(s);

}

public static Stream intsFrom (int i, Stream s) {

return new StreamIntsFrom(i,s);

}

public static Stream sum (Stream s1, Stream s2) {

return new StreamSum(s1,s2);

}

public static Stream filter (Predicate<Integer> p, Stream s) {

return new StreamFilter(p,s);

}

public abstract boolean hasElement ();

public abstract Integer current ();

public abstract FuncIterator<Integer> advance();

}� �
We now implement the concrete subclasses. All are rather trivial, and all do not do any work
until asked to what the current() element of a stream is, or what the advance() stream is.� �

// Concrete subclass for cons()

//

class StreamCons extends Stream {

private Integer first;

private Stream rest;

public StreamCons (Integer f, Stream r) {

first = f;

rest = r;

}

public boolean hasElement () { return true; }

public Integer current () { return this.first; }

public FuncIterator<Integer> advance () { return this.rest; }

}� �
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� �
// Concrete subclass for tail()

class StreamTail extends Stream {

private Stream str;

public StreamTail (Stream s) {

this.str = s;

}

public boolean hasElement () { return true; }

public Integer current () { return this.str.advance().current(); }

public FuncIterator<Integer> advance () {

return Stream.tail((Stream) this.str.advance());

}

}� �
For StreamTail, notice the cast required for advance to type check. You should be able
to figure out why it’s needed. (Hint: again, it’s all about loss of typing information due to
subclassing. See Lecture 12.)� �

// Concrete subclass for intsFrom()

//

class StreamIntsFrom extends Stream {

private Integer n;

public StreamIntsFrom (Integer n) {

this.n = n;

}

public boolean hasElement () { return true; }

public Integer current () { return this.n; }

public FuncIterator<Integer> advance () {

return Stream.intsFrom(this.n+1);

}

}� �
� �

// Concrete subclass for sum()
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//

class StreamSum extends Stream {

private Stream stream1;

private Stream stream2;

public StreamSum (Stream s1, Stream s2) {

stream1 = s1;

stream2 = s2;

}

public boolean hasElement () { return true; }

public Integer current () {

return stream1.current() + stream2.current();

}

public FuncIterator<Integer> advance () {

return Stream.sum((Stream) stream1.advance(),

(Stream) stream2.advance());

}

}� �
The filter creator is a bit more interesting. It takes a predicate as argument, and intuitively
returns the stream of all elements of the supplied stream argument for which the predicate is
true. In Scheme, we can represent a predicate as a function (or a lambda), In Java and most
OO language, we need to wrap a function you want to pass as an argument in an object.

Let’s define an interface for predicates over values of type T:� �
public interface Predicate<T> {

public boolean pred (T arg);

}� �
Here is an example of a predicate over integers, that returns true if and only if an integer is
not divisible by a given number:� �

public class NotDivByPredicate implements Predicate<Integer> {

private Integer divisibleBy;

private NotDivByPredicate (Integer y) {

divisibleBy = y;

}
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public static NotDivByPredicate mk (Integer y) {

return new NotDivByPredicate(y);

}

public boolean pred (Integer x) {

return (x % this.divisibleBy != 0);

}

}� �
Thus, NotDivByPredicate.mk(4) returns a predicate that can used to test if an integer is
not divisible by 4.� �

// Concrete subclass for filter()

//

class StreamFilter extends Stream {

private Predicate<Integer> pred;

private Stream str;

private Filter (Predicate<Integer> p, Stream str) {

this.pred = p;

this.str = str;

}

public boolean hasElement () { return true; }

public Integer current () {

FuncIterator<Integer> tmp = this.str;

// loop until we have found an element that satisfies the predicate

while (!(this.pred.pred(tmp.current()))) {

tmp = tmp.advance();

}

return tmp.current();

}

public FuncIterator<Integer> advance() {

FuncIterator<Integer> tmp = this.str;

// loop until we have found an element that satisfies the predicate

while (!(this.pred.pred(tmp.current())))

tmp = tmp.advance();

return Stream.filter(this.pred, (Stream) tmp.advance());

}
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}� �
If we define a function for printing the first n elements out of a functional iterator over the
integers:� �

public static void printFirstNFromIterator (FuncIterator<Integer> it, int

n) {

int i;

FuncIterator<Integer> tmp = it;

for (i=0; i<n; i++) {

System.out.println(" " + tmp.current());

tmp = tmp.advance();

}

}� �
We can now try out something such as:

Stream s1 = Stream.intsFrom(3);

Stream s2 = Stream.intsFrom(10);

printFirstNFromIterator(Stream.sum(s1,s2),10);

This prints the first 10 elements of the stream obtained by summing the stream starting
from 3 and the stream starting from 10. This yields:

13

15

17

19

21

23

25

27

29

31

As expected. Make sure you understand what is happening.

As a cute exampe, we can try to compute, using (a variant of) the Sieve of Eratosthenes, the
stream of all prime numbers. The sieve computes the list of prime numbers by essentially
starting with all integers from 2 on, and then keeping 2 and removing all multiples of 2,
then moving to the next unremoved integer (3), keeping it and removing all multiples of 3,
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moving to the next unremoved integer (5), keeping it and removing all multiples of 5, and so
on. You can convince yourself that what you are left with is the stream of all prime numbres.

Here is a concrete subclass of Stream that implements the sieve—the creator, instead of
being shoved away into Stream, is here available under the name Sieve.mk().� �

// Concrete subclass for sieve (no creator in Stream class)

//

public class Sieve extends Stream {

private Stream str;

private Sieve (Stream s) {

this.str = s;

}

public static Stream mk (Stream s) {

return new Sieve(s);

}

public boolean hasElement () { return true; }

public Integer current () { return this.str.current(); }

public FuncIterator<Integer> advance () {

return Sieve.mk(Stream.filter(NotDivByPredicate.mk(this.str.current()),

Stream.tail(this.str)));

}

}� �
And indeed, executing

Stream primes = Sieve.mk(Stream.intsFrom(2));

printFirstNFromIterator(primes,14);

yields

2

3

5

7

11

13
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17

19

23

29

31

37

41

43

Note, however, that this is far from being an efficient way for computing prime numbers, as
you can tell immediately by running the above code.
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