
Logic and Computation Lecture 28
CSU 290 Spring 2009 (Pucella) Monday, Apr 6, 2009

Binary Search Trees

A binary search tree is a data structure for quick access to elements. The idea is to store
elements in a tree, with the property that all elements less than (or equal) to the root at in
the left subtree, and all elements greater than the root are in the right subtree.

It the tree is balanced, that is, as close to complete as possible, to find an element in the
tree (or to see that it is not in the tree), it takes time worst-case roughly log(N), where N
is the number of elements in the tree. In contrast, looking for an element in a list (or seeing
that the element is not in the list) takes time worst-case roughly N , where N is the number
of elements in the list. When N is large, log(N) is much much smaller than N . So binary
search trees are more efficient when search amongst large sets of numbers.

Why might you use binary search trees? If you wanted to implement, say, sets of numbers.
You could use a binary search tree to implement the set, and seeing if an element is in the
set corresponds to looking for an element in the tree.

We are interested in coming up with an ADT for binary search trees (or bst). The key is
to make sure that every bst we construct satisfies the property that all elements in the left
subtree of a node are less than or equal to the root value, and all elements in the right
subtree of a node are greater than the root value, and this for every node in the bst.

To ensure this, instead of providing a constructor such as node (like we did for the tree
ADT), we provide a constructor insert that inserts an element in the right spot in the tree.

empty : () -> bst

insert : (integer bst) -> bst

isEmpty : (bst) -> bool

root : (bst) -> integer

left : (bst) -> bst

right : (bst) -> bst

What’s the algebratic specification? That’s more interesting. Again, we need to come up with
equations corresponding to the application of selectors to each of the constructors (empty,
and insert). The constructor insert is the more interesting one. Here is the algebraic
specification.

(isEmpty (empty)) = true
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(isEmpty (insert a t)) = false

(root (insert a t)) =

a if (isEmpty t)=true

(root t) if (isEmpty t)=false

(left (insert a t)) =

(empty) if (isEmpty t)=true

(insert a (left t)) if (isEmpty t)=false and a<=(root t)

(left t) if (isEmpty t)=false and a>(root t)

(right (insert a t)) =

(empty) if (isEmpty t)=true

(right t) if (isEmpty t)=false and a<=(root t)

(insert a (right t)) if (isEmpty t)=false and a>(root t)

Intuitively, the specification for left and right tell you that to get the left subtree of a bst,
you keep all the inserts that inserted something that was less than the root of the tree,
and symmetrically for getting the right subtree of a bst. If you’re not convinced, try the
specification on a few examples.

So what’s an implementation for the above? We use the same representation for trees that we
used last lecture, and the same functions implementation for empty, isEmpty, left, right,
root.

(defun empty ()

NIL)

(defun isEmpty (tr)

(endp tr))

(defun root (tr)

(first tr))

(defun left (tr)

(if (endp tr)

NIL

(second tr)))

(defun right (tr)

(if (endp tr)

NIL

(third tr)))
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For insert, we simply compare the value to insert to the root of the tree to insert into. If
we’re inserting into an empty tree, we create a node for the value. If the value is smaller or
equal to the root value, we recursively insert the value into the left subtree of the current
tree, and if the value is greater than the root value, we recursively insert the value into the
right subtree of the current tree. The value gently finds its right spot in the tree.

(defun insert (a tr)

(if (endp tr)

(list a NIL NIL)

(if (<= a (root tr))

(list (root tr) (insert a (left tr)) (right tr))

(list (root tr) (left tr) (insert a (right tr))))))

Let’s write down a predicate bst? that checks that a structure is actually a binary search
tree, by checking the bst property that all values in the left subtree are less than or equval to
the root value, and all values in the right subtree are greater than the root value. We need
a couple of auxiliary functions to make the definition of bst? more palatable: (all-<= a

tr) checks that every element in tree tr is <= than a, and (all-> a tr) checks that every
element in tree tr is > than a.

(defun all-<= (a tr)

(if (endp tr)

T

(and (<= (root tr) a)

(all-<= a (left tr))

(all-<= a (right tr)))))

(defun all-> (a tr)

(if (endp tr)

T

(and (> (root tr) a)

(all-> a (left tr))

(all-> a (right tr)))))

(defun bst? (tr)

(if (endp tr)

(= tr NIL)

(and (all-<= (root tr) (left tr))

(all-> (root tr) (right tr))

(bst? (left tr))

(bst? (right tr)))))

3



As a sanity check, we may want to prove that inserting a value into a binary search tree
yields a binary search tree.

(implies (bst? tr) (bst? (insert a tr))))

That’s not so obvious to prove. I’ll leave it as a (hard) exercise for now. I don’t mind so
much not having it, because we have the algebraic specification for binary search trees, and
we can prove that our implementation satisfies the specification.

Note how we translated the above algebraic specification into ACL2.

(defthm isempty-empty

(isEmpty (empty)))

(defthm isempty-insert

(implies (and (bst? tr)

(integerp a))

(not (isEmpty (insert a tr)))))

(defthm root-insert-1

(implies (and (bst? tr)

(integerp a)

(isEmpty tr))

(= (root (insert a tr)) a)))

(defthm root-insert-2

(implies (and (bst? tr)

(integerp a)

(not (isEmpty tr)))

(= (root (insert a tr)) (root tr))))

(defthm left-insert-1

(implies (and (bst? tr)

(integerp a)

(isEmpty tr))

(= (left (insert a tr)) (empty))))

(defthm left-insert-2

(implies (and (bst? tr)

(integerp a)

(not (isEmpty tr))

(<= a (root tr)))

(= (left (insert a tr)) (insert a (left tr)))))
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(defthm left-insert-3

(implies (and (bst? tr)

(integerp a)

(not (isEmpty tr))

(> a (root tr)))

(= (left (insert a tr)) (left tr))))

(defthm right-insert-1

(implies (and (bst? tr)

(integerp a)

(isEmpty tr))

(= (right (insert a tr)) (empty))))

(defthm right-insert-2

(implies (and (bst? tr)

(integerp a)

(not (isEmpty tr))

(<= a (root tr)))

(= (right (insert a tr)) (right tr))))

(defthm right-insert-3

(implies (and (bst? tr)

(integerp a)

(not (isEmpty tr))

(> a (root tr)))

(= (right (insert a tr)) (insert a (right tr)))))

There, so we have an implementation of binary search trees (which is, by the way, the
standard implementation), and we showed formally that the implementation satisfied the
algebraic specification. If you believe that the algebraic specification truly captures what a
binary search tree is doing, then we’re done.

Let’s look at a very interesting property of binary search trees. You remember inorder
traversals, right, from last time? Here’s the code for a tree inorder traversal.

(defun inorder (tr)

(if (isEmpty tr)

NIL

(append (inorder (left tr))

(cons (root tr)

(inorder (right tr))))))
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Binary search trees have an interesting property with respect to inorder traversals. To get a
sense for it, consider the following function that lets us construct binary search trees easily,
given a list of integers.

(defun make-tree (L)

(if (endp L)

(empty)

(insert (car L) (make-tree (cdr L)))))

Note that the elements are inserted in the tree in the reverse order of that in which they
appear in the list. Thus, for instance:

ACL2 !>(make-tree ’(3 5 6 4 7 4 7 9))

(9 (7 (4 (4 (3 NIL NIL) NIL)

(7 (6 (5 NIL NIL) NIL) NIL))

NIL)

NIL)

Now, let’s take an inorder traversal of that tree:

ACL2 !>(inorder (make-tree ’(3 5 6 4 7 4 7 9)))

(3 4 4 5 6 7 7 9)

Interesting. It produced a sort of the list of elements. Try it for several other binary search
trees, you’ll see that you always get a sorted list of the elements. Let’s prove at least one
part of this conjecture, namely, that the result of making an inorder traversal of a binary
search tree always resulsts in an ordered list, ordered in increasing order. Let’s define that
predicate first.

(defun ordered->= (L)

(if (endp L)

T

(if (endp (cdr L))

T

(and (<= (car L) (car (cdr L)))

(ordered->= (cdr L))))))

The theorem we want is basically that

(implies (bst? tr) (ordered->= (inorder tr)))

Before we can prove it, though, we need a few lemmas. And to express those lemmas, we
needs a few auxiliary functions. How did I know I needed to prove those lemmas? Well, I
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tried proving the above directly, it didn’t work. ACL2 got stuck basically trying to prove
that the result of appending the inorder traversal of the left subtree with the root and the
inorder traversal of the right subtree yielded an ordered list. By the induction hypothesis,
we know that the inorder traversal of the left and the right subtrees of a bst are ordered,
but then you need a lemma that says that if you append two ordered lists such that every
element in the first list is less than the first element of the second list, then the result is
ordered. Also, we need a lemma that says that consing an element in front of an ordered list
with the property that that element is less than or equal to every element of the list yields a
list which is itself ordered. With two auxiliary functions (list-all-<= a L) that says that
a is <= than every element of L, and (list-all-> a L) that says that a is > than every
element of L, we can state and prove those lemmas.

(defun list-all-<= (a L)

(if (endp L)

T

(and (<= (car L) a)

(list-all-<= a (cdr L)))))

(defun list-all-> (a L )

(if (endp L)

T

(and (> (car L) a)

(list-all-> a (cdr L)))))

(defthm lemma-1

(implies (and (ordered->= L)

(list-all-> a L))

(ordered->= (cons a L))))

(defthm lemma-2

(implies (and (ordered->= L)

(not (endp M))

(ordered->= M)

(list-all-<= (car M) L))

(ordered->= (append L M))))

The next two lemmas make the link between the all-> function on trees and the list-all->
function on lists, and similarly for all-<= and list-all-<=

(defthm lemma-3

(implies (all-> a tr)

(list-all-> a (inorder tr))))
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(defthm lemma-4

(implies (all-<= a tr)

(list-all-<= a (inorder tr))))

We can now prove our main theorem.

(defthm ordered-inorder

(implies (bst? tr)

(ordered->= (inorder tr))))

Voilà.
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