
Logic and Computation Lectures 12
CSU 290 Spring 2009 (Pucella) Monday, Feb 9, 2009

Reasoning about Equality and Function Symbols

Last time, we saw a generalization of propositional logic to reason about equality of values.
The goal today is to generalize this somewhat, to eventually get to the full ACL2 logic, which
is a form of quantifier-free first-order logic of the kind I pointed out last time.

Let me restart the presentation from scratch, and built up the right logic with the right
terminology.

First, some motivation. Ultimately, we want to reason about ACL2 expressions: At the end
of the day, we want to be able to state very general properties of programs written in ACL2.

For instance, we can check by testing that for the definition of factorial fact we gave a
couple of lectures back, (fact n) seems always positive: (fact 1) is, as is (fact 2), as is
(fact 3). It seems quite reasonable to think that (fact n) is positive for any n. But of
course testing does not tell us that, cannot tells us that. (Why not?)

What we will develop is a logic that will let us prove that for all choices of n, (fact n)

is positive. That is, for all n, (>= (fact n) 0) is true. In fact, we will be able to say
more. Further testing may suggest that fact always returns an integer. And indeed, we
will be able to prove that (fact n) is always an integer, that is, that for all n, (integerp
(fact n)) is true. In fact, we will be able to prove that for all n, (>= (fact n) 0) ∧
(integerp (fact n)) is true.

So, let’s extend the logic we introduced last week, and let’s call it the ACL2 logic. I will use
F,G,H, . . . to range over formulas of ACL2 logic to distinguish them from propositiional
logic formulas.

A formula F,G of ACL2 logic is one of:

• true, false (constants)

• exp (any expression in the ACL2 language)

• ¬F (negation)

• F ∧G (conjunction)

• F ∨G (disjunction)

• F ⇒ G (implication)

1



• F ≡ G (equivalence, also written F ⇔ G).

Thus, a formula F looks just like a propositional formula, except that it has ACL2 expressions
instead of propositional variables.

So, a formula such as above, (>= (fact n) 0) ∧ (integerp (fact n)), is a formula of
ACL2 logic.

We care about the validity of such formulas, which in analogy with validity for propositional
logic formulas, means that for all choices of values for the variables in the formula, the
resulting formula is true. The truth conditions for the logical connectives are given by the
usual truth tables, and the truth conditions for the basic expressions of ACL2 are as we saw
in the “Propositional Logic in ACL2” lecture: any value that is not NIL is considered true,
while NIL is considered false.

To prove validity of such formulas, we cannot use a truth table or exhaustively try all possible
value, so we must rely on an indirect method such as an equational proof. An equational
proof for the ACL2 logic is just like one for propositional logic, but we will refine the definition
somewhat. As a matter of terminology, a formula for which you can find an equational proof
we will call a theorem.

First off, we need some useful concepts.

An instance of a propositional formula is a propositional formula in which we have replaced
every propositional variable by a formula of ACL2 logic (the same formula replacing the same
propositional variable, of course). Thus, ((= x y) ∧ (= y z))⇒ (= x y) is an instance of
the propositional formula (p∧ q)⇒ p, where p has been replaced by (= x y) and q has been
replaced by (= y z).

Similarly, an instance of an ACL2 formula is an ACL2 formula in which we have replaced
every variable by an expression of ACL2. (Since variables are expressions in ACL2, we can re-
place a variable by another variable, of course.) Thus, ((= a (+ b c))∧(= (+ b c) d))⇒
(= a (+ b c)) is an instance of ((= x y)∧(= y z))⇒ (= x y), where x has been replaced
by a, y has been replaced by (+ b c) and z has been replaced by d.

An axiom is a formula that is given to be valid, without proof. In a precise sense, axioms
correspond to the primitives of the ACL2 language. This is the logic equivalent of having a
primitive in the language, for which you cannot see the definition in terms of other primitives.
An axiom we shall see, for example, is that (= (car (cons x y)) x).

So what’s an equational proof?

Definition. An equational proof of a formula F of ACL2 logic is a sequence of formulas
F1, F2, . . . , Fk such that:

• the first formula F1 is just F ;

• the last formula Fk is either an axiom or an instance of a valid propositional formula

2



• every formula in the sequence is obtained from the preceeding one by one of the Equa-
tional Proof Rules detailed below.

We will consider, at first, three equational proof rules that rewrite formulas into other for-
mulas.

Rule of Substitution: If G ≡ G′ is an instance of a theorem, then we can rewrite a formula
F by replacing occurrences of G in F by G′.

Rule of Propositional Reasoning: If ϕ ≡ ψ is a valid propositional formula, and G ≡ G′

is an instance of ϕ ≡ ψ, then we can rewrite a formula F by replacing occurrences of G in
F by G′.

Rule of Modus Ponens: if G ⇒ G′ is an instance of a theorem, then we can rewrite a
formula F by replacing occurrences of G in F by G ∧G′.

Those are the basic rules. Note that Propositional Reasoning lets us do a vast amount of
propositional reasoning in one shot. (You may need to have an argument on the side showing
that a particular propositional formula you need is valid.)

It is absolutely immediate that every axiom is a theorem, and similalry that every instance
of a valid propositional formulas is also a theorem.

The reason why we care about equational proofs is the following Soundness Property of
ACL2 Logic: If an ACL2 formula F has an equational proof, that is, if F is a theorem,
then F is a valid formula of ACL2 logic.

In other words, if F has an equational proof, then we can be sure that for any values of the
variables in F , F will be true. This result takes the place of potentially an infinite number
of tests that you would need to perform.1 The reason why this Soundness Property is true
is that a proof is a sequence of formulas in which each formula is valid if and only if the
previous formula is valid. By arriving at a formula that is valid at the end (an axiom or an
instance of a valid propositional formula), this means that the whole sequence of formulas
represents valid formulas, so the first one must be valid as well.

In order to get more than just propositional validities, we need to know something about
the expressions in ACL2. After all, primitive operations such as = and car and the likes
have some properties that we haven’t captured yet. Those are the axioms I’ve talked about
above. So what are the axioms? For the time being, that is, until next lecture, let’s focus
on formulas in which the ACL2 expressions are of the form (= exp1 exp2) where exp1 and

1The Soundness Property is a mathematical property of the logic. Because it is a mathematically state-
ment, it can actually be proved, and the proof is actually not that hard, although it is somewhat outside
the scope of this part of the course. If you’re curious, and you have the mathematical background, the proof
is a simple proof by induction on the length of an equational proof—you only need to show that every rule
preserves and reflects the validity of the formulas involved.

3



exp2 are arbitrary expressions. The axioms controlling = and function symbols are simple,
and we’ve seen most of them last time.

Axioms for Equality:

• reflexivity: (= x x)

• symmetry: (= x y) ≡ (= y x)2

• transitivity: (= x y) ∧ (= y z) ≡ (= x y) ∧ (= x z)3

• Leibniz: ((= x1 y1) ∧ ... ∧ (= xn yn))⇒ (= (f x1 ... xn) (f y1 ... yn))

for any symbol f of arity n

Note that the last axiom is really a family of axioms, one per symbol f).

Here is an example.

Theorem. (= x y) ∧ (= (foo y) (bar y))⇒ (= (foo x) (bar y))

Proof.

(= x y) ∧ (= (foo y) (bar y))⇒ (= (foo x) (bar y))

by Modus Ponens with Leibniz axiom

(= x y) ∧ (= (foo x) (foo y)) ∧ (= (foo y) (bar y))⇒ (= (foo x) (bar y))

by Substitution with transitivity of =

(= x y) ∧ (= (foo x) (foo y)) ∧ (= (foo x) (bar y))⇒ (= (foo x) (bar y))

which is an instance of the valid (p ∧ q)⇒ q

ut

Next time, we look at more general expressions in ACL2 formulas, and how to reason about
functions we define ourselves.

2Equivalently, we could use (= x y)⇒ (= y x)—we could prove the same theorems.
3Equivalently, we could use (= x y) ∧ (= y z)⇒ (= x z)—we could prove the same theorems.

4


