
Access Controls and Trust
Management

Zach Kissel

References

A State-Transition Model of Trust Management and Access Control
Ajay Chander, Drew Dean, and John C. Mitchell

Reconstructing Trust Management
Ajay Chander, Drew Dean, and John C. Mitchell

Overview

 What is Access Control

 Lampson's Access Matrix

 Model for Access Controls

 Demonstrate correctness of Model

 A Trust Management solution

What is Access Control

Access Control is a way to associate a set of
objects O, a set of rights R, and a set of
subjects such that a right is
enforced with respect to how a subject
interacts with an object

s∈S
o∈O

r∈RS⊆O

Lampson's Access Matrix (1971)

Let A be an m×n matrix in {0,1}
m×n

 with columns

labeled by the pair o ,r i where o∈O and

r∈R and with rows labeled with subjects, s j∈S .

Moreover, if ai , j=1 then subject s j can perform

o ,r i .

Two Ways to Look at Lampson's
Access Matrix

1. Access Control List (ACL)

 In terms of Lampson's Access Matrix, an ACL
for object with right is defined as
the column corresponding to pair in the
access matrix.

 This is the Unix model we are all familiar with.
Namely, rights belong to objects.

o ,r
o∈O r∈R

2. Capabilities

 In terms of Lampson's Access Matrix,
capabilities for a subject s is defined as the row
of the access matrix corresponding to s.

 Intuitively, the rights reside with the users not
the objects

 There are other ways to represent capabilities
such as using unforgeable bit strings.

Modeling Access Control

Goals

We want a way to model access controls so we
can systematically compare and contrast
different types of access control.

A State Transition Model

 A world state, WS, which contains the state of
system at a given point in time.

 A set of Actions, , which defines a transition
from one world state to another.

 An Access Judgment which
means in the world state WS subject s can
access object o with right r.

WS├ s o ,r

Modeling ACL's

 Define the world state WS as the map:
 where,

 The set of actions for ACL's will be defined as

 Let the access judgment rule be defined as:

A:O×RP S S⊆O

={Create , Allow ,Revoke ,Delete }

WS├ s o ,r ≝ s∈A o ,r

Create and Delete Actions

Create sc , o=O∪{o } , R , S∪{sc} , A '

 Where, A' o ,r ={
sc if r=re

∅ if r≠re

Delete o =O {o } , R , S {o} , A
∣O {o } , R ,S {o }

Allow and Revoke Actions

Allow s , o ,r =O , R , S∪{s } , A '

Where, A'=A [o ,r A o ,r ∪{s }]

Revoke s , o ,r =O , R , S⊖{s } , A '

Where, S⊖ {s }={S if ∣A1 {s }∣≥2

S {s } otherwise

A'=A [o , r A o ,r {s }]

Modeling Capabilities

 Define the world state WS as the map:
 where,

 The set of actions for capabilities will be
defined as

 Let the access judgment rule be defined as:

C : SP O×R S⊆O

={Create , Delete ,Grant , Revoke }

WS├ s o ,r ≝ o ,r ∈C s

Create and Delete Actions

Create sc , o=O∪{o } , R , S∪{sc} ,C '

Delete o =O {o } , R , S {o } ,C
∣S {o } ,O {o }

Where, C ' sc ={{
o ,r e } if se∉S

C sc ∪{o ,r e} if sc∈S

Grant and Revoke Actions

 Grant s , o ,r =O , R , S∪{s } ,C [sC s ∪{o ,r }]

Revoke s , o ,r =O , R ,S ' ,C '

Where, S '={S
{s } if C s =o ,r

S if C s ≠o ,r

C '=C [sC s {o ,r }]s∈S '

Reasoning about the Models

Comparing The Models

 In order to compare the models to one
another we need to we introduce relations and
mappings to reason about the strength of each
access model.

 In our present case, we can show that we can
map an ACL model to a Capabilities model in
such a way that the models behave the same

Bisimulation Relation

Given a set P of states and a set T of transitions let
p , p '∈P and S be a binary relation over P such that if
it holds that pSq then if p

p ' , then ∃q , q '∈P
such that q

q ' and p ' Sq ' The relation is known as a
stong simulation.

A Mapping from ACLs to
Capabilities

Define a mapping f from WSA to WSC as follows:

f Create sc , o = Create sc ,o

f Delete o = Delete o

f Allow s ,r , o = Grant s , o , r

f revoke s ,r , o = Revoke s ,o , r

Capabilities strongly Simulate
ACLs

 We can show that the previous mapping
sends an ACL model to a bisimilar Capabilities
model

 We can also show that we can go in the other
direction.

Disadvantage of ACLs and
Capabilities

 One of the major drawbacks of the access
control methods presented thus far is they can
not easily handle cascading revocation of
rights.

 Can we use the formalism presented to help
us in determining a better access control
policy?

Trust Management
(A Stronger form of Access Control)

What is a Trust Management
System?

 A system in which an access request is
accompanied by a set of credentials which
together constitute a proof as to why the access
should be allowed.

 Access is enforced by using a root access
control list composed of a small group of
“ super users” and policies implemented by
delegation

Modeling Trust Management

 Define the world state WS as the maps:
 and

 The set of actions for capabilities will be

defined as:

A:O×RP O×ℕ

={Create , Add ,Remove , Delegate , Revoke , Delete }

D:O×R×OP O×ℕ

Access Judgment in Trust
Management

 Two set membership functions:

 One Rule

ACL s , o , r , d is true iff s , d ∈A o , r

Del s , o ,r ,r s , d is true iff r s , d ∈D s ,r , o

Subject s can access the o , r pair iff it can
produce a proof of Access s , o ,r , d , for some d ,
from the world state and the provided inference rules.

Access Proof Inference Rules

 Root ACL:

 Delegation:

 Ord1:

 Ord2:

ACL A , B , r , d ⊃ Access A , B ,r , d

Access A , B , d1

 ∧ Del A , B , r ,C , d

⊃ Access C , B , r , d 1

Access A , B , d1 ⊃ Access A , B , d

Del A , B , r ,c , d1 ⊃ Del A , B ,r , c , d

Create and Delete Action

Create oc , o =O∪{o} , R , A' , D '

Where, A' o ,r ={
oc ,1 if r=re

∅ if r≠re

 ∀ r∈R

D'=D [s ,r , o ∅∣ s∈O ,r∈R]

Delete o =O {o } , A
∣ O {o }

, D
∣ O {o }

Add and Remove Actions

 Add o ,r , os , d =O , R , A ' , D

Where, A'=A [o ,r A o , r ∪{os , d }]

Remove o ,r , os , d =O , R , A' , D

Where, A'=A [o ,r A o , r {os , d }]

Delegate and Revoke Actions

 Delegate os , o ,r , od =O , R , A , D '

Where, D'=D [os , r , o D os , r ,O ∪{od , d }]

Revoke os , o ,r , od =O , R , A , D '

Where, D'=D [os , r , o D os , r ,O {od , d }]

Comparing ACLs and Trust
Management

 It can be shown, similar to how we showed
ACLs were equivalent to Capabilities, if the
delegation depth is limited to zero then trust
management will strongly simulate ACLs

 It can also be shown that ACLs can't simulate
the general Trust Management, because of the
cascading effects of a deletion and revocation
of rights.

Completing The Trust
Management Model

 The trust management system shown is
incomplete.

 In a later paper Chander, Dean, and Mitchell
extend there model to take into account Fully
Qualified Names (FQNs). A way of accessing
objects in a distributed system.

 They argue that FQNs are irrelevant to the
actual analysis of Trust Management.

Conclusions
 In the papers it was shown that Trust

Management offers a stronger solution to the
access control problem, as opposed to the
currently implemented methods.

 This was accomplished through a rather

simple model.

 For a discussion of implementation in a kernel
and how FQNs are used see “ Reconstructing
Trust Management.”

Questions?

