
The Spi Calculus
CSG 399 Lecture

The Spi Calculus – p.1

Recall CSP

Model system as a CSP process

A specification is a property of traces
Often, can be represented as a process Spec

Checking a specification: Spec v P

Every trace of P is a trace of Spec

The Spi Calculus – p.2

Abadi and Gordon’s Approach

Uses a different calculus of processes

Based on the π calculus
“Philosophical” alternative to CSP

Offers different ways of specifying and verifying
protocols

AG use equivalence with “obviously correct” system

The Spi Calculus – p.3

The π Calculus

Let us start by defining the π calculus

Just a calculus for reasoning about concurrent systems

As in CSP, notion of processes, which can be put in
parallel

Processes may communicate by sending values over
channels

Channels have a scope (which process knows which
channel)

But channel names can be sent to other processes
Scope extrusion

The Spi Calculus – p.4

Syntax - Values

First, let us define a syntax for terms that denote the values
exchangeable between processes

A term M , N is one of:

Name n

For channels, keys, nonces, primitive messages

Pair (M, N)

Variable

(AG also talk about integers and arithmetic operations)

The Spi Calculus – p.5

Syntax - Processes

We use a more readable syntax introduced in later papers
on the spi calculus

A process P is of the form:

out M N ; Q: send N on channel M , then behave as Q

inp M (x); Q: receive a value on channel M , bind it to x
in Q, then behave as Q

P | Q: P and Q executing in parallel

new (n); Q: create new name n in the scope of Q

The Spi Calculus – p.6

Other Process Forms

repeat Q: replicate Q

match M is N ; Q: proceed as Q if M and N are equal

stop: do nothing and stops

split M is (x, y); Q: split the pair M into x and y and
behaves as Q

The Spi Calculus – p.7

Example

new (c);

new (d);

new (M);

(out c M ; stop |

inp c (x); out d x; stop |

inp c (x); stop)

The Spi Calculus – p.8

Semantics

The semantics of the π calculus is a relation P → Q that
gives one possible next step of the execution of P .

Note that there can be many possible next steps

Processes are nondeterministic

The definition is in two steps

Define when two processes are structurally equivalent

Define the reaction relation P → Q

The Spi Calculus – p.9

Reduction Relation P > Q

“P reduces immediately to Q”

repeat P > P | repeat P

match M is M ; P > P

split (M, N) is (x, y); P > P [M/x][N/y]

P [M/x] : replace every free occurrence of x by M

The Spi Calculus – p.10

Structural Equivalence P ≡ Q

“P and Q are basically the same process”

P ≡ P

P | stop ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

new (m); new (n); P ≡ new (n); new (m); P

new (n); stop ≡ stop

new (n); (P | Q) ≡ P | new (n); Q, if n 6∈ fn(P)

The Spi Calculus – p.11

If P > Q then P ≡ Q

If P ≡ Q then Q ≡ P

If P ≡ Q and Q ≡ R then P ≡ R

If P ≡ Q then P | R ≡ Q | R

If P ≡ Q then new (n); P ≡ new (n); Q

The Spi Calculus – p.12

Reaction Relation P → Q

“P can execute and become Q”

out m N ; P | inp m (x); Q → P | Q[N/x]

If P ≡ P ′, Q ≡ Q′, and P ′ → Q′, then P → Q

If P → P ′ then P | Q → P ′ | Q

If P → P ′ then new (n); P → new (n); P ′

P →∗ Q if ∃P1, . . . , Pk with P → P1 → · · · → Pk → Q

The Spi Calculus – p.13

The Spi Calculus - Terms

Toss in the ability to encrypt messages (shared key) and
that of decrypting messages.

New term form:

{M}N

The Spi Calculus – p.14

The Spi Calculus - Processes

New process form:

decrypt M is {x}N ;P

Intuitively, try to decrypt M with key N

If it succeeds, bind x to result and proceed with P

If it fails, process is stuck

Note that this embodies:

Can only decrypt if you have the key

There is enough redundancy to detect when decryption
has succeeded

The Spi Calculus – p.15

The Wide Mouthed Frog protocol

Two agents communicating without sharing a key

A wants to send M to B

A and B do not share keys

A and B both share a key with a server S

A −→ S :{KAB}KAS

S −→ B :{KAB}KBS

A −→ B :{M}KAB

The Spi Calculus – p.16

Modeling Security Protocols

Essentially like in CSP

Write a process for each agent

Put all the processes in parallel into a system

Then, prove something of interest about the process

The Spi Calculus – p.17

Modeling WMF - Initiator

INIT (M) = new (KAB);

out net {KAB}KAS ;

out net {M}KAB ;

stop

Assumes a channel net representing the “network”

The Spi Calculus – p.18

Modeling WMF - Server

SERVER = repeat inp net (x);

decrypt x is {y}KAS ;

out net {y}KBS ;

stop

The Spi Calculus – p.19

Modeling WMF - Receiver

RESP = inp net (x);

decrypt x is {y}KBS ;

inp net (x);

decrypt x is {z}y;

F (z)

The Spi Calculus – p.20

Modeling WMF - System

SYS (M) = new (KAS);

new (KBS);

(INIT (M) | RESP | SERVER)

If F does not contain free occurrences of KAS and KBS :

SYS (M) →∗ F (M)

Running the protocol can yield F (M)

This is a sanity check: the protocol can make progress

The Spi Calculus – p.21

Specifying Secrecy

Intuition:

Message exchange is kept secret if the system
exchanging message M is indistinguishable from the
outside from the system exchanging message M ′

Formally:

Message exchanged is kept secret if for every M, M ′:

If F (M) ' F (M ′), then SYS (M) ' SYS (M ′)

The Spi Calculus – p.22

Process Equivalence

We want to define a notion of what it means for two
processes to be indistinguishable (called equivalent)

There are many possible choices, depending on what
one means by equivalent

A pastime in the process calculus world is to define
notions of equivalences

Different equivalences have different properties
Some are easier to establish than others

Structural equivalence is an equivalence

Too fine
Really just a form of syntactic equivalence

The Spi Calculus – p.23

Testing Equivalence

AG use testing equivalence as the notion of equivalence

Two processes are testing equivalent, written P ' Q, if they
are indistinguishable to any other process

No process R can distinguish:

If it is running in parallel with P

If it is running in parallel with Q

The Spi Calculus – p.24

Barbs

Define a predicate describing the channels on which a
process can communicate

A barb β is an input or an output channel, where output
channels are marked by a bar m

P exhibits barb β, written P ↓ β, is defined by

out m M ; P ↓ m

inp m (x); P ↓ m

If P ↓ β then P | Q ↓ β

If P ↓ β and β 6∈ {m, m}, then new (m); P ↓ β

If P ≡ Q and Q ↓ β, then P ↓ β

The Spi Calculus – p.25

Tests

We generalize to P may eventually exhibit barb β, written
P ⇓ β, by:

If P ↓ β then P ⇓ β

If P → Q and Q ⇓ β, then P ⇓ β

A test is a closed process R and a barb β—think, process R
trying to see if the tested process can be made to exhibit
barb β

P v Q if for all (R, β), (P | R) ⇓ β, then (Q | R) ⇓ β

P ' Q if P v Q and Q v P

The Spi Calculus – p.26

Testing Equivalence is a Congruence

One can check that testing equivalence has a nice property:

If P and Q cannot be distinguished by a third process R
in parallel, it turns out that P and Q can be used
interchangeably in any context

Formally:

' is a congruence

If P ' Q, then C[P] ' C[Q], when C[·] is a closed
context—a closed process with a hole

The Spi Calculus – p.27

Specifying Authentication

Intuition:

The system where message M is exchanged using the
protocol is indistinguishable from a system where
message M “magically” makes it to the responder.

The Spi Calculus – p.28

The “Specification” System

RESP ′(M) = inp net (x);

decrypt x is {y}KBS ;

inp net (x);

decrypt x is {z}y;

F (M)

SYS ′(M) = new (KAS);

new (KBS);

(INIT (M) | RESP ′(M) | SERVER)

The Spi Calculus – p.29

Formalizing Authentication

Message is authenticated if for all M :

SYS (M) ' SYS ′(M)

The Spi Calculus – p.30

Where’s the Adversary?

It is implicit in the model!

All properties expressed as P ' Q

P ' Q means no third process (the adversary) can
make it so that something can be distinguished
between P and Q

Third process can intercept messages, decrypt them if
he knows the key, take messages apart, send new
messages, etc

Thus, the third process can be thought of as an
instance of a Dolev-Yao adversary

The Spi Calculus – p.31

Final Notes

How do you check P ' Q?

Prove it explicitly by applying definitions

Develop a proof system for '

Define an equivalence that is easier to establish, that
implies '

Alternative:

Keep spi calculus as a language

Use different specification and verification techniques
Proverif (uses logic programming)
Correspondence assertions (uses a type system)

The Spi Calculus – p.32

	Recall CSP
	Abadi and Gordon's Approach
	The $pi $ Calculus
	Syntax - Values
	Syntax - Processes
	Other Process Forms
	Example
	Semantics
	Reduction Relation $P > Q$
	Structural Equivalence $P equiv Q$
	
	Reaction Relation $Pightarrow Q$
	The Spi Calculus - Terms
	The Spi Calculus - Processes
	The Wide Mouthed Frog protocol
	Modeling Security Protocols
	Modeling WMF - Initiator
	Modeling WMF - Server
	Modeling WMF - Receiver
	Modeling WMF - System
	Specifying Secrecy
	Process Equivalence
	Testing Equivalence
	Barbs
	Tests
	Testing Equivalence is a Congruence
	Specifying Authentication
	The ``Specification'' System
	Formalizing Authentication
	Where's the Adversary?
	Final Notes

