
Projects

CSG 399

February 24, 2006

You should be starting to think about a possible project for the course.
(See below for the approximate timeline you should keep in mind.) Please
get in touch with me by email by the break, to decide what you would
like to work on. Once you have chosen a project, I will give you 2 or 3
papers on the topic, and your job will be to read, understand, summarize,
critique, and finally give a one-hour conference-style presentation about the
papers in class. I will also ask you for a 5-10 pages writeup to go with your
presentation, so that I have something concrete to look at after your talk.

The presentation should explain the problem that the papers investigate,
and emphasize the core message that has appeared throughout this course,
that reasoning about security requires one to carefully develop a formal
model, carefully develop a specification, and design methods for verifying
that the model satisfies the specification. Therefore, when reading your
papers, you should constantly keep in mind the following three questions:

1. What model of systems are the authors using or proposing (and is that
a reasonable choice)?

2. What specifications are the authors proposing to capture the proper-
ties they care about (and are they reasonable)?

3. What are the proposed verification techniques, if any (and what are
their advantages/disadvantages)?

Timeline

Here is a rough timeline of what I have in mind:

• By March 3rd: Choose your project

1



• Before March 31st: Arrange a one-on-one meeting with me, where
you will describe to me what you have extracted from the papers,
how you have understood what the authors are doing, and go over
what you propose to put in your presentation. If you have never
put a presentation together before, that conversation should help you
structure it, and I will provide further help if you need it. In any case,
this conversation will convince me that you have read the papers and
understood them.

• From April 1st on: Student presentations in class

There may be more students presentation than actual formal class time
between April 1st and the end of classes. Meaning that we will have to
find some time somewhere. We will discuss this in class towards the end of
march, to see what can be done about it.

Some Project Suggestions

If you have some difficulty coming up with a project, here are some sugges-
tions. The papers I give are purely indicative, and there is enough literature
in any of these topics for you to find something to your liking. I do not have
handy references for all those topics, so feel free to get in touch with me if
one of the description with no associated paper interests you.

Another alternative for ideas is to look at past proceedings of the Com-
puter Security Foundations Workshop (CSFW), at http://www.csl.sri.
com/programs/security/csfw/, or the IEEE Symposium on Security and
Privacy, at http://www.ieee-security.org/TC/SP-Index.html. Many of
the papers at those conferences are available online. (And if not, generally
a polite email to the authors will get you a copy.)

Strand Spaces. Strand spaces is a framework developed at MITRE for
reasoning about security protocols. The selling point of the approach is that
it provides for simple and intuitive proofs of how messages flow in a system.
Sample papers include [17, 8].

Model Checking. Model checking is a automated verification technique
often used in hardware verification and some forms of software verification
to check that an abstract model satisfies a property expressed as a temporal
properties of traces of events; that is, properties of the form: “if X occurs in
the trace, then afterwards, Y always occurs”, or “X occurs as long as Y does

2



not”. This technique has been applied to protocol analysis, sample papers
include [13, 12].

Types for Protocol Analysis. As I mentioned in class, it is possible to
reason about processes in the spi calculus not just by analyzing the processes
by equivalence, but also by imposing a type system developed so that a
process type-checks if it satisfies a particular security property. Sample
papers include [1, 7].

Logic Programming Approaches. Bruno Blanchet developed ProVerif,
a protocol verification tool for the verification of security protocols based on
logic programming (think, Prolog). It works quite well, and can take a
variety of input languages, including a variant of the spi calculus. Sample
papers include [4, 5]

Multiset Rewriting. Another protocol verification framework, this time
based on rewrite rules and linear logic. Sample papers include [6, 3]

Constraints-Based Approaches. Another approach to analyzing pro-
tocols is to start from the end, so to speak. Very roughly speaking, describe
what a bad trace looks like, and show that such a bad trace cannot occur
under the constraints imposed by the protocol being analyzed.

Computational Soundness. The big assumption of Dolev-Yao style pro-
tocol analysis is that the cryptography is perfect: attackers cannot extract
any information from an encrypted piece of data if they do not have the key.
How far off from reality is this? There is a need to explore whether or not
this assumption is really a problem or not, by comparing the Dolev-Yao at-
tacker assumption with a more careful account of cryptography. The paper
that started it all is [2].

Polynomial-Time Attackers. A natural follow-up of the previous topic,
although in reality it is quite orthogonal. If we wanted to analyze protocols
not so much in the presence of a Dolev-Yao adversary, but an adversary
that can perform arbitrary probabilistic polynomial time computations, in-
cluding guessing values used in the protocol, what would such a framework
would look like? One approach is to define a probabilistic form of the pi
calculus with a notion of polynomial-time boundedness built-in. Sample
papers include [11, 14].

3



And leaving the realm of protocol analysis:

Intrusion Detection. Intrusion detection is the problem of detecting an
intrusion on the system, typically as the system is running, by for instance
monitoring messages exchanged on the network, or the system calls per-
formed. Many systems have been proposed for doing this, and some people
are trying to analyze them formally.

Enforceable Security Policies. A security policy is, generally construed,
a classification of good and bad traces in a system. (A good trace satisfies
the policy, a bad trace does not.) Given such a general definition of security
policy, can you always enforce a security policy by monitoring the execution
of a system? It turns out that the class of security policies that can be en-
forced by execution monitoring is a proper subclass of all security policies.
But there is some debate as to what exactly execution monitoring means;
sample papers include [16, 10].

Digital Rights Management. There is a lot of work in standard bodies
nowadays to describe languages in which to express digital rights licenses:
ODRL, XrML, and so on. There is also a lot of work in trying to understand
what exactly these languages are capturing, and what they are not. Sample
papers include [9, 15].

Access Control Models. What are appropriate formal models for rea-
soning about access control policies (think unix: which user is allowed to
read what file, a very simple access control policy). More generally, can we
come up with general models of access control that recover most existing
approaches?

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology,
15(2):103–127, 2002.

4



[3] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating multi-
set rewriting and process algebras for security protocol analysis. Journal
of Computer Security, 13(1):3–47, 2005.

[4] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In Proc. 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pages 82–96. IEEE Computer Society Press, 2001.

[5] B. Blanchet. From secrecy to authenticity in security protocols. In
Proc. 9th International Static Analysis Symposium (SAS’02), volume
2477 of Lecture Notes in Computer Science, pages 342–359. Springer-
Verlag, 2002.

[6] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A
meta-notation for protocol analysis. In Proc. 12th IEEE Computer
Security Foundations Workshop (CSFW’99), pages 55–69. IEEE Com-
puter Society Press, 1999.

[7] A. D. Gordon and A. Jeffrey. Authenticity by typing for security pro-
tocols. In Proc. 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pages 145–159. IEEE Computer Society Press, 2001.

[8] J. Y. Halpern and R. Pucella. On the relationship between strand
spaces and multi-agent systems. ACM Transactions on Information
and System Security, 6(1):43–70, 2003.

[9] J. Y. Halpern and V. Weissman. A formal foundation for
XrML. In Proc. 17th IEEE Computer Security Foundations Workshop
(CSFW’04), pages 251–263, 2004.

[10] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability
classes for enforcement mechanisms. ACM Transactions on Program-
ming Languages and Systems, 28(1):175–205, 2006.

[11] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic
poly-time framework for protocol analysis. In Proc. 5th ACM Con-
ference on Computer and Communications Security (CCS’98), pages
112–121, 1998.

[12] W. Marrero, E. Clarke, and S. Jha. A model checker for authentication
protocols. In Proc. DIMACS Workshop on Cryptographic Protocol De-
sign and Verification, 1997. Available from http://dimacs.rutgers.
edu/Workshops/Security/.

5



[13] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryp-
tographic protocols using Murϕ. In Proc. 1997 IEEE Symposium on
Security and Privacy, pages 141–151. IEEE Computer Society Press,
1997.

[14] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilis-
tic polynomial-time calculus for analysis of cryptographic protocols.
In Proc. 17th Annual Conference on the Mathematical Foundations of
Programming Semantics, volume 45 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2001.

[15] R. Pucella and V. Weissman. A formal foundation for ODRL. In
Proc. Workshop on Issues in the Theory of Security (WITS’04), 2004.

[16] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):30–50, 2000.

[17] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(2/3):191–
230, 1999.

6


