
06/04/06 1

Intrusion Detection
● Define attacks using a signature

– This is just a pattern on events/actions
● Three categories

– Network Based
● Inspect raw network packages

– Host Based
● Software that takes advantage of OS facilities

– Stack Based
● Integrated with the TCP/IP stack (vendor specific)

06/04/06 2

Network Intrusion Detection
Systems (NIDS)

● Purpose
– Detect an intrusion coming from the network

● Current Solutions (sketch)
– Define attack as an attack signature
– Match attack signature with ongoing activities

● How
– Regular expression over events
– Attack signatures capture a whole class of attack

instances

06/04/06 3

Snort
● Snort

– Preprocessor (after package decode)
– Rule matching
– Output (alerts, logs, counter measures)

● For example
alert tcp any any -> 192.168.1.0/24 111
(content:''|0 01 86 a5|'';
msg:''mountd access'';)

06/04/06 4

Problems
● Coming up with an attack signature

– Analysts inspect examples
– Hypothesize about the properties that must hold
– Write down the expression

● No systematic way to
– check for false positives or false negatives
– evaluate the impact of attack signature changes

06/04/06 5

GARD
● Session Signatures

– The entire attack as a regular language
● Attack invariant

– Another representation of the attack, used to
evaluate session signatures

● Semantic model of attack protocol
– Finite state machine

● How protocol commands alter protocol state
● Generation, Analysis, Refinement, Deployment

06/04/06 6

Systematic Method

(1) Initial session signature (syntactic features)
(2) Attack invariant (semantic features)
(3) Compare (1) with (2)

• If false positives or false negatives go to (1), else
exit

06/04/06 7

Using an example
● Ftp-cwd attack (BlackMoon FTP server)

– Login (anonymous)
– Send cwd command with an overly long argument,

will cause a buffer overflow.

06/04/06 8

Signature Specification
● Based on 3 parts

– Preparation
● Attacker sets up the attack's pre-conditions

– Exploitation
● Attacker launches the attack

– Confirmation
● Attacker determines that the attack succeeded

06/04/06 9

Events

● Events are observable sequences of bytes that
may be part of an attack (Flex and friends)

Event Token Lexeme Description
SLOGIN

QUIT
CWD
ARG

INVALID

L
Q
C
A
I
R

(^“230”(\w)\n)
(^“QUIT”\n)

(^“CWD”)
([SP] <str> \n)

(^[^1-5])

User logged in
User Quit

Change Directory
Argument of an FTP command

A non-FTP response

● Protocol Dependent
● Libraries for standard protocols

06/04/06 10

Regular Expressions

E ::= token
 (E)* | (E)+
 ¬(E)
 (E op1 E)
 (token such that R)
 R ::= (data ∈ raw_expr)
 (length op2 INT)
 (R op3 R) .
 op1 ::= · | ∩ | ∪
 op2 ::= < | > | = | ≠
 op3 ::= ∨ | ∧

● Precondition ((¬L)* · L · (¬Q)*)+

● Exploitation
C · (A such_that data ∈ (.)*bin/sh(.)*
 && length>100)

06/04/06 11

Regular Expressions(cont.)
● Confirmation I

R

● Each expression defines a language
 L

pre
 , L

exp
, L

conf

06/04/06 12

Putting the Signature Together
● GARD uses Hierarchical State Machines

06/04/06 13

Invariant Specification
● Invariant is a logical formula over the state

variables of the finite state machine.
Var. Values Semantic Comments

x1 {0, 1} A USER command was issued.
x2 {0, 1} A PASS command was issued.
x3 {0, 1} Victim has indicated a successful login.
x4 {U = 0, A = 0,
 B =1, E=2} Holds session representation type
x5 {U = 0, S = 0,
 B =1, C=2} Holds session transmission mode
x6 {0, 1} A session is in passive mode.
x7 {0, ... ,MAX} Number of files uploaded in this session.
x8 {0, ... ,MAX} Number of files downloaded in this
 session.

06/04/06 14

Events and Variables
Event Token Lexeme Pre-condition

SLOGIN
QUIT
CWD
ARG

INVALID

L
Q
C
A
I
R

(^“230”(\w)\n)
(^“QUIT”\n)

(^“CWD”)
([SP] <str> \n)

(ˆ[ˆ1-5])

-
 -
-
-
-

Post-condition
x3=1

∀ x
i
= 0

-
-
-

● We can translate the logical formula to a regular
language, L(I

ftp
)

06/04/06 15

The whole picture

Super State

x1=0,... xn=0

x1=1,... xn=0 x1=1,... xn=0

x1=1,... xn=0 x1=1,... xn=0

A,C,E,Q

A,E,L

L Q

Q

Q

A,E,L

C

C

A,L

06/04/06 16

Signature Evaluation
● Define

– L(SS) = L
pre

 • L
exp

 • L
conf

– L(I
ftp

)

– U
FTP

 = ultimate set of attacks

● Ideally we would like L(SS) = U
FTP

● Non-ideal situation generates false positives
and false negatives.
– fp = L(SS) ∩ ¬U

FTP
, fn = ¬L(SS) ∩ U

FTP

06/04/06 17

Signature Evaluation(cont.)

● The methodology assumes L(I
ftp

) ⊇ U
FTP

● But now we have to deal with spurious (sp)
sequences.

06/04/06 18

Edit Distance

● Systematic method requires an iterative
refinement

● Reduce the probability of sp, generate new
instances through modifications to existing
instances
– Edit distance: ed(s1,s2) = number of deletions,

insertions or substitutions to transform s1 to s2
– ED

k
(L)={x|∃y ∈ L such that ed(x, y)<k}.

06/04/06 19

Modeling the Protocol
● Given a protol P, we construct a semantic

model of M
P
 (a finite state machine)

● A state in M
P
is a valuation of variables,

transitions affect these variables.

06/04/06 20

Some pitfalls
● Operations on languages introduce fp or fn.

– Union introduces extra paths
● Not really an attack
● An attack not captured by the session signature.

● GARD guarantees no false positives and no
false negatives with respect to the invariant

● Domain experts come up with both the invariant
and the session signatures
– GARD assists in narrowing down fp and fn through

automatic generation of attacks.

06/04/06 21

Automatic Generation and Analysis
of NIDS Attacks

● Edit distance is one approach
● Attackers can be (and usually are) sneaky

– Split the attack into multiple FTP sessions
(1) Login and ftp over code and log out
(2) Login and execute code from (1)

● Problem
● Given an attack instance automatically generate all

possible instances
● Verify that these are attacks!

06/04/06 22

The problem(s) ...
● Black Hat Problem

– Given an NIDS and an instance of an attack A, find
an instance of A that evades the NIDS

● White Hat Problem
– Given an instance of an attack A and a sequence of

packets s, determine whether s is an instance of A

06/04/06 23

How do they do it?
● An attacker knows

– The signature(s) used
– The protocol(s) e.g., ftp, TCP etc.
– An instance of the attack

● Based on the above knowledge
– Perform transformations/rewrites on one attack

instance to obtain a new attack instance

06/04/06 24

We'll do the same ...
● Attacker's knowledge as inference (or

transformation) rules
● Use an inference engine to generate all

possible attack instances
– Starting from a known attack instance

● White Hat Problem : run the inference engine
● Black Hat Problem : check if the attack is a

member of the set returned by the inference
engine

06/04/06 25

Limitations
● Black Hat - Infinite traces

– Partitions based on testing techniques
● Each partition exercises different features an NIDS

should handle
– Prune some derivations

● No packet fragmentation on packets with size less than 5
bytes

● White Hat – when to stop searching
– Bottom up approach (shrinking rules)

06/04/06 26

Rules
● Application, Protocol Rules, OS Rules
● Split into two categories

– Shrinking Rules
– Expanding Rules

● TCP Fragmentation (r1)
– Fragments an attack packet into two packets. Adds

victim acknowledgment after each new packet.
● HTTP space padding (r7)

– Insert spaces after an HTTP method:
 from “GET <URL>” into “GET___<URL>”

06/04/06 27

Formal Model of Attack Derivation

● Natural deduction system <F,Φ>
– F is the set of facts
– Φ is the set of inference rules

● Derivations
– f1 ├

Φ
fn , if there is a derivation sequence < f1,...,fn>

such that f1 ∈F and each f
i+1

is a result of applying a
derivation rule r ∈Φ.

06/04/06 28

Assumptions
● Each rule has an expanding and a shrinking

version.
● A derivation containing only shrinking rules has

not cycles.
● Root(a)

– A derivation containing only shrinking rules and
starts from sequence a

06/04/06 29

Derivation model of an attack
● Derivation model of an attack

– Given α as an instance of an attack A and a set of
inference rules Φ

● A derivation model of A is a natural deduction system of
<roots

Φ
(α), Φ>

● The closure of a derivation model (Cl
Φ
(roots

Φ
(α))) is the

set of all TCP sequences that are derived from roots
Φ
(α)

using Φ's rules.

06/04/06 30

Black Hat and White Hat
● NIDS view

– N is a NIDS, N's view with respect to an attack A is
the set of TCP sequences that N recognizes as A

● Black Hat
– Given <roots

Φ
(α), Φ> for A, and an NIDS view of A

denoted as V
NA

 find s ∈ Cl
Φ
(roots

Φ
(α)) \ V

NA

● White Hat
– Given <roots

Φ
(α), Φ> for A, find s ∈ Cl

Φ
(roots

Φ
(α))

06/04/06 31

Properties of the
Attack Derivation Model

● For an attack A and a set of rules Φ a derivation
model is
– Sound if it derives TCP sequences that implement

A,
– Complete if it can derive any TCP sequences that

implements A
– Decidable given a TCP sequence there is an

algorithm that determines whether or not a
sequence is derived from the root.

06/04/06 32

For our two Hat Problems
● Black Hat

– Soundness
● Any instance we discover is a vulnerability

– Completeness
● Eventually the model will generate all instances

● White Hat
– Soundness

● Lack of false positives
– Completeness

● Lack of false negatives

06/04/06 33

Proving Completeness
● There is no formal definition of the notion

– “a TCP sequence that implements A”
● However, the derivation model can be used to

inductively define “implements” A.
– Each transformation rule preserves A's semantics.

