SDSI - A Simple Distributed Security
Infrastructure

encryption decryption
plaintext ciphertext plaintext

Mohinish Vinnakota
CS 6750 Fall 2009
Cryptography and Communication Security

Overview

Principals are public keys

(Public-Key:
(RSA-with-SHA1:
(N: =Gt802Tbz9HKmO067=)
(E: &11)))

Egalitarian design-no global hierarchy necessary
Each principal is a “certification authority.”
Local name spaces

Simple data structures
Flexible Signatures

Identity certificates have human readable content

Overview

Certificates also give name/value bindings and assert membership.

On-line Internet orientation.

Linked local name spaces.

(ref: bob alice) or (ref : <principal> alice)

Accommodation for “standard roots” and global name spaces.

VeriSign!!
|APR!!
USPS!!
DNS!!

DNS (Internet email) names have a special status.

Bob.Smith@penguin.microsoft.com
is equivalent to
DNS!!'s com's microsoft's penguin's Bob.Smith

Overview

= A SDSI group is typically a set of principals.

friends
mit's biology-department's faculty

(Group: Tom Sam "Bill Gates")

= Clean support for roles.

= Delegation Certificates.

Standard SDSI Object Types

Keys and encryption parameters

Cryptographic keys are represented by an attribute/value object

(Public-Key:
(RSA-with-SHA1:
(N: =Hi7KugVv013Tv978d00vCpQ==
(E: &11)))
(Private-Key:
(RSA-with-SHA1:
(N: =Hi7KugV013Tv978d00vCpQ==
(D:&43)))
(Shared-Secret-Key:
(RC5-32/12/16-CBC:
(K: "ossifrage")))

Standard SDSI Object Types

Principals as public keys, and their servers

(Principal:
(Public-Key: ...)
(Global-Name: (ref: VeriSign!! WebMaster Bob-Jones))
(Principal-At: "http://abc.webmaster.com/cgi-bin/sdsi-server/")
(Server-At: "http://xyz.webmaster.com/cgi-bin/sdsi-server/")

)

Standard SDSI Object Types

Encrypted objects

Giving it explicitly in a Key: (attribute/value) field:
(Encrypted:
(Key: (Shared-Secret-Key: ...))
(Ciphertext: =Yh870KlqpBv8iY55+n==...))

Giving its hash in a Key-Hash: (attribute/value) field:
(Encrypted:
(Key-Hash: (SHA1 &241dc...))
(Ciphertext: =Yh870KlqpBv8iY55+n==...))

Representing it explicitly as an encrypted object itself:
(Encrypted:
(Key: (Encrypted:
(Key-Hash: (SHA1 &548...))
(Ciphertext: &765...)))
(Ciphertext: &345...))

Standard SDSI Object Types

Signed Objects

(Signed:
(Object-Hash: (SHA1: =7YhdOmNcGFE071QTzXsap+q/uhb=))
(Date: 1996-02-14T11:46:05.046-0500)
(Signature: &3421197655f0021cdd8acb21866b))

Local Names

= Each principal has its own local name-space.

= A name may be represented in one of two ways:

v" As an octet string that does not begin with any special character.
Example: "abc", mary-sue, tom@nsf.gov, &61 .

v" As an arbitrary S-expression n, enclosed in the form

(Local-Name: n).
Example: (Local-Name: (Accounting (Bob Smith)))

Name/Value Bindings

= The principal may assign a value to a local name by issuing a
corresponding certificate.

= The binding can be "symbolic*

“bob can bind his local name lawyer to ted's lawyer”

Certificates

= Certificates (certs) are signed (set-type) objects.
= Signed messages are a special case of certificates.

(Cert:

(Local-Name: FudgeCo-employees)

(Value: (Group: "Bill Sweet" "Candy Tooth" "Ima Nut"))

(Description:
"All current hourly and exempt employees including
those on medical or parental leave.")

(ACL: (read: FudgeCo-management))

(Signed: ...))

Protocols

v' Communication in SDSI takes place as a sequence of
protocols between two parties.
v' One party called “Client” and other “Server”.

request

message
_
CLIENT . SERVER

So on until
protocol is finished

v' Message can be sent in compressed form.
v' When received it can be decompressed before further processing.
v' If itis of type Encrypted:, the recipient decrypts the message.

Protocols : Queries with “Get” protocol

= Server holds a database of certificates.
= |t can be queried to return collections of certificates that satisfies some criteria.

= The Get query always contains a To: field specifying a principal.
= |t specifies a “template” for the desired certificates, giving the object type of
desired certificates.

Get. . (Get.Reply:

(Te Ee'ry.') (Your-Last-Message-Hash : (SHA1 : =tGiO=)
(To : (Principal : ...))) (Reply :

(Template : (Cert: (Local-Name : jim))) (Cert:..)

(Signed:...)) (Cert:..)

)
(Signed:...))

Protocols : Queries with “Get” protocol

= Server holds a database of certificates.
= |t can be queried to return collections of certificates that satisfies some criteria.

= The Get query always contains a To: field specifying a principal.
= |t specifies a “template” for the desired certificates, giving the object type of
desired certificates.

(Get.Query: (Get.Error :
(To : (Principal : ...)) (Your-Last-Message-Hash : (SHA1 : =tGiO=)

(Template : (Cert: (Local-Name : jim))) (Error =
(Signed:...)) (Signed:...))

Protocols : Reconfirmation Queries

= SDSI does not have “certificate-revocation lists.
= Signatures may be designed as needing periodic reconfirmation.

(Reconfirm.Query: (Reconfirm.Reply:
(To: (Principal: ...)) (Your-Last-Message-Hash:
(Signed-Object: (SHA1: =Ac8wE1l...=))
(Signed: (Signed-Object:
(Object-Hash: (SHA1: &5128)) (Signed:
(Date: 1999-12-25-08:00.000-0500) (Object-Hash: (SHA1: &5128))
(Signature: &333111))) (Date: 1999-12-25-08:00.000-0500)
(Signature: &333111)
(Signed:

(Object-Hash: (SHA1: &a783b0))
(Date: 2000-01-25-12:10.000-0500)
(Signature: &86723)))

Protocols : Reconfirmation Queries

= SDSI does not have “certificate-revocation lists.
= Signatures may be designed as needing periodic reconfirmation.

(Reconfirm.Query:
(To: (Principal: ...))
(Signed-Object:
(Signed:
(Object-Hash: (SHA1: &5128))
(Date: 1999-12-25-08:00.000-0500)
(Signature: &333111)))

(Reconfirm.Reply:
(Your-Last-Message-Hash:
(SHA1: =Ac8wE1...))
(Failure: <reason>)
(Signed: ...))

Protocols : Auto-Certs

= An auto-certificate is a special kind of certificate.
= |t is distinguished by having been signed by the principal whom it is about.

(Auto-Cert:
(Public-Key: ...)

(Principal-At: ...)

(Server: ...)

(Local-Name: ...)

(Global-Name: VeriSign!!'s Wonderland's "Alice McNamee")
(Name: [charset=unicode-1-1] &764511fcc...)

(Description: ...)

(Encryption-Key: (Public-Key: ...))

(Postal-Address: ...)

(Phone: ...)

(Fax:...)

(Photo: [image/gif] =Yu7gj9D+zX2C...)

(VeriSign-Cert: [application/X.509v3] =GvC492Sq...)

(Email-address: AliceMcNamee@wonderland.com)

(Signed: ...))

Protocols : Delegation Certificates

The Delegation-Cert: is used to authorize a group (of servers) to be able to sign on
behalf of the signing principal.

(Delegation-Cert:
(Template: <form>)
(Group: <group>)
(Signed: ...))

For an example:

(Delegation-Cert:
(Template: (Membership.Cert: (Group: fudge-lovers)))
(Group: (Principal: ... (A) ...))
(Signed: ...))

Groups

Groups can be defined by listing their members in a sequence-type
object of type Group:.

For example:
(Group: tom mary bill (Principal : ...))

Groups can also be defined recursively in terms of other groups:

(Group: (AND: friends over-18 jocks)) — intersection
(Group: (OR: faculty staff friends)) —union
(Group: (NOT: staff)) -- ALL! — group
(Group: (MINUS: staff friends) -- staff that are not friends
(Group: (ANY: 2 wizards honchos bigwigs)) -- threshold of >= 2
(Group: (OR:
"Mary Smith“
friends
mit's faculty
(ref: &32)
(Principal:...))))
(Group: (OR: alpha (AND: beta gamma) (NOT: delta)))

Groups : Membership Queries

= Membership queries are used to obtain membership certificates
= An individual can query a server to ask whether he is a member of a particular group.
= The server can respond with a membership certificate.

= For very large groups, it may be too expensive to return the entire group definition
to a client.

Request Reply
(Membership.Query: (Membership.Cert:
(To: (Principal: ... A ...)) (Member: (Principal:...B...)...)
(Member: (Principal:...B...) ...) (Group: fudge-lovers))
(Group: fudge-lovers)) (Reply: <answer>)
(Credentials: ...) (Hint: <hint>)

(Signed: ...)) (Signed: ...))

Access-Control Lists

= A group definition have an ACL so that only certain principals may read
the definition.

= An ACL is a sequence of the form (ACL: (typel defl) (type2 def2) ...)
= where each type determines the set of operations being controlled
(e.g. read)

= where def is either the local name of a group

As an example, the certificate for group-23 can only be read by its members:

(Cert:
(Local-Name: group-23)
(Value: (Group: friends colleagues))
(ACL: (read: group-23))
(Signed: ...))

Application Scenarios

= Mail Reader

= World-Wide Web

= Kerberos-like tickets

= Distributed signed code

= Corporate database access
= Access to medical records

= Shared-secret key establishment

= Multi-Cast

Conclusions

= SDSI is a simple yet powerful framework for managing security in a distributed

environment.
= The perspectives and style shown here may assist others in building more

secure systems.

References

1 Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.

In Proceedings 1996 IEEE Symposium on Security and Privacy, page (to appear), May 1996.
2 D. Clark and D. Wilson. A comparison of commercial and military computer security policies.
In IEEE Security Privacy, 1987.
3 3rd Donald E. Eastlake and Charles W. Kaufman. Domain Name System Security Extensions.
Internet DNS Security Working Group, January 30, 1996. (Available at:sp:p.isi edurdratt-ett-dnssec-secext-

09.txt).

4 Stephen T. Kent. Internet privacy enhanced mail. Communications of the ACM, 36(8):48-60,
August 1993.

5 National Bureau of Standards. Secure hash standard. Technical Report FIPS Publication 180,
National Bureau of Standards, 1993.

6 Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments, April
1992. RFC 1321.

7 Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38-47, February 1996.

