
Mohinish Vinnakota
CS 6750 Fall 2009
Cryptography and Communication Security

 Principals are public keys

 Egalitarian design-no global hierarchy necessary

 Each principal is a “certification authority.”

(Public-Key:
(RSA-with-SHA1:

(N: =Gt802Tbz9HKm067=)
(E: &11)))

 Local name spaces

 Simple data structures

 Flexible Signatures

 Identity certificates have human readable content

 Certificates also give name/value bindings and assert membership.

 On-line Internet orientation.

 Linked local name spaces.

(ref: bob alice) or (ref : <principal> alice)

 Accommodation for “standard roots” and global name spaces.

VeriSign!!
IAPR!!
USPS!!
DNS!!

 DNS (Internet email) names have a special status.

Bob.Smith@penguin.microsoft.com
is equivalent to

DNS!!'s com's microsoft's penguin's Bob.Smith

 A SDSI group is typically a set of principals.

friends
mit's biology-department's faculty

(Group: Tom Sam "Bill Gates")

 Clean support for roles.

 Delegation Certificates.

Keys and encryption parameters

(Public-Key:
(RSA-with-SHA1:

(N: =Hi7KugV013Tv978d00vCpQ==)
(E: &11)))

(Private-Key:
(RSA-with-SHA1:

(N: =Hi7KugV013Tv978d00vCpQ==)
(D: &43)))

(Shared-Secret-Key:
(RC5-32/12/16-CBC:
(K: "ossifrage")))

Cryptographic keys are represented by an attribute/value object

Principals as public keys, and their servers

(Principal:
(Public-Key: ...)
(Global-Name: (ref: VeriSign!! WebMaster Bob-Jones))
(Principal-At: "http://abc.webmaster.com/cgi-bin/sdsi-server/")
(Server-At: "http://xyz.webmaster.com/cgi-bin/sdsi-server/")

)

Encrypted objects

Giving it explicitly in a Key: (attribute/value) field:
(Encrypted:

(Key: (Shared-Secret-Key: ...))
(Ciphertext: =Yh87oKlqpBv8iY55+n== ...))

Giving its hash in a Key-Hash: (attribute/value) field:
(Encrypted:

(Key-Hash: (SHA1 &241dc...))
(Ciphertext: =Yh87oKlqpBv8iY55+n== ...))

Representing it explicitly as an encrypted object itself:
(Encrypted:

(Key: (Encrypted:
(Key-Hash: (SHA1 &548...))
(Ciphertext: &765...)))

(Ciphertext: &345...))

Signed Objects

(Signed:
(Object-Hash: (SHA1: =7Yhd0mNcGFE071QTzXsap+q/uhb=))
(Date: 1996-02-14T11:46:05.046-0500)
(Signature: &3421197655f0021cdd8acb21866b))

 Each principal has its own local name-space.

 A name may be represented in one of two ways:

 As an octet string that does not begin with any special character.
Example: "abc", mary-sue, tom@nsf.gov, &61 .

 As an arbitrary S-expression n, enclosed in the form
(Local-Name: n).

Example: (Local-Name: (Accounting (Bob Smith)))

 The principal may assign a value to a local name by issuing a
corresponding certificate.

 The binding can be ``symbolic'‘

“bob can bind his local name lawyer to ted's lawyer”

 Certificates (certs) are signed (set-type) objects.
 Signed messages are a special case of certificates.

(Cert:
(Local-Name: FudgeCo-employees)
(Value: (Group: "Bill Sweet" "Candy Tooth" "Ima Nut"))
(Description:

"All current hourly and exempt employees including
those on medical or parental leave.")

(ACL: (read: FudgeCo-management))
(Signed: ...))

 Communication in SDSI takes place as a sequence of
protocols between two parties.

 One party called “Client” and other “Server”.

CLIENT SERVER

request

message
.
.

So on until
protocol is finished

 Message can be sent in compressed form.
 When received it can be decompressed before further processing.
 If it is of type Encrypted:, the recipient decrypts the message.

 Server holds a database of certificates.
 It can be queried to return collections of certificates that satisfies some criteria.

 The Get query always contains a To: field specifying a principal.
 It specifies a “template” for the desired certificates, giving the object type of
desired certificates.

(Get.Query:
(To : (Principal : …))
(Template : (Cert: (Local-Name : jim)))
(Signed : …))

(Get.Reply:
(Your-Last-Message-Hash : (SHA1 : =tGi0=)
(Reply :

(Cert : …)
(Cert : …)
…)

(Signed : …))

 Server holds a database of certificates.
 It can be queried to return collections of certificates that satisfies some criteria.

 The Get query always contains a To: field specifying a principal.
 It specifies a “template” for the desired certificates, giving the object type of
desired certificates.

(Get.Query:
(To : (Principal : …))
(Template : (Cert: (Local-Name : jim)))
(Signed : …))

(Get.Error :
(Your-Last-Message-Hash : (SHA1 : =tGi0=)
(Error : …)
(Signed : …))

 SDSI does not have “certificate-revocation lists.

 Signatures may be designed as needing periodic reconfirmation.

(Reconfirm.Query:
(To: (Principal: ...))
(Signed-Object:
(Signed:

(Object-Hash: (SHA1: &5128))
(Date: 1999-12-25-08:00.000-0500)
(Signature: &333111)))

(Reconfirm.Reply:
(Your-Last-Message-Hash:

(SHA1: =Ac8wE1...=))
(Signed-Object:

(Signed:
(Object-Hash: (SHA1: &5128))
(Date: 1999-12-25-08:00.000-0500)
(Signature: &333111)
(Signed:

(Object-Hash: (SHA1: &a783b0))
(Date: 2000-01-25-12:10.000-0500)
(Signature: &86723)))

 SDSI does not have “certificate-revocation lists.

 Signatures may be designed as needing periodic reconfirmation.

(Reconfirm.Query:
(To: (Principal: ...))
(Signed-Object:
(Signed:

(Object-Hash: (SHA1: &5128))
(Date: 1999-12-25-08:00.000-0500)
(Signature: &333111)))

(Reconfirm.Reply:
(Your-Last-Message-Hash:

(SHA1: =Ac8wE1...))
(Failure: <reason>)
(Signed: ...))

 An auto-certificate is a special kind of certificate.

 It is distinguished by having been signed by the principal whom it is about.

(Auto-Cert:
(Public-Key: ...)
(Principal-At: ...)
(Server: ...)
(Local-Name: ...)
(Global-Name: VeriSign!!'s Wonderland's "Alice McNamee")
(Name: [charset=unicode-1-1] &764511fcc...)
(Description: ...)
(Encryption-Key: (Public-Key: ...))
(Postal-Address: ...)
(Phone: ...)
(Fax: ...)
(Photo: [image/gif] =Yu7gj9D+zX2C...)
(VeriSign-Cert: [application/X.509v3] =GvC492Sq...)
(Email-address: AliceMcNamee@wonderland.com)
(Signed: ...))

The Delegation-Cert: is used to authorize a group (of servers) to be able to sign on
behalf of the signing principal.

(Delegation-Cert:
(Template: <form>)
(Group: <group>)
(Signed: ...))

(Delegation-Cert:
(Template: (Membership.Cert: (Group: fudge-lovers)))
(Group: (Principal: ... (A) ...))
(Signed: ...))

For an example:

Groups can be defined by listing their members in a sequence-type
object of type Group:.

For example:
(Group: tom mary bill (Principal : ...))

Groups can also be defined recursively in terms of other groups:

(Group: (AND: friends over-18 jocks)) – intersection
(Group: (OR: faculty staff friends)) – union
(Group: (NOT: staff)) -- ALL! – group
(Group: (MINUS: staff friends) -- staff that are not friends
(Group: (ANY: 2 wizards honchos bigwigs)) -- threshold of >= 2
(Group: (OR:

"Mary Smith“
friends
mit's faculty
(ref: &32)
(Principal: ...))))

(Group: (OR: alpha (AND: beta gamma) (NOT: delta)))

 Membership queries are used to obtain membership certificates

 An individual can query a server to ask whether he is a member of a particular group.

 The server can respond with a membership certificate.

 For very large groups, it may be too expensive to return the entire group definition
to a client.

(Membership.Query:
(To: (Principal: ... A ...))
(Member: (Principal: ... B ...) ...)
(Group: fudge-lovers)
(Credentials: ...)
(Signed: ...))

(Membership.Cert:
(Member: (Principal: ... B ...) ...)
(Group: fudge-lovers)
(Reply: <answer>)
(Hint: <hint>)
(Signed: ...))

Request Reply

 A group definition have an ACL so that only certain principals may read
the definition.
 An ACL is a sequence of the form (ACL: (type1 def1) (type2 def2) ...)
 where each type determines the set of operations being controlled
(e.g. read)
 where def is either the local name of a group

As an example, the certificate for group-23 can only be read by its members:

(Cert:
(Local-Name: group-23)
(Value: (Group: friends colleagues))
(ACL: (read: group-23))
(Signed: ...))

 Mail Reader

 World-Wide Web

 Kerberos-like tickets

 Distributed signed code

 Corporate database access

 Access to medical records

 Shared-secret key establishment

 Multi-Cast

 SDSI is a simple yet powerful framework for managing security in a distributed
environment.
 The perspectives and style shown here may assist others in building more
secure systems.

1 Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.

In Proceedings 1996 IEEE Symposium on Security and Privacy, page (to appear), May 1996.

2 D. Clark and D. Wilson. A comparison of commercial and military computer security policies.

In IEEE Security Privacy, 1987.

3 3rd Donald E. Eastlake and Charles W. Kaufman. Domain Name System Security Extensions.

Internet DNS Security Working Group, January 30, 1996. (Available at:ftp://ftp.isi.edu/draft-ietf-dnssec-secext-
09.txt).

4 Stephen T. Kent. Internet privacy enhanced mail. Communications of the ACM, 36(8):48-60,

August 1993.

5 National Bureau of Standards. Secure hash standard. Technical Report FIPS Publication 180,

National Bureau of Standards, 1993.

6 Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Comments, April

1992. RFC 1321.

7 Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based

access control models. IEEE Computer, 29(2):38-47, February 1996.

