Braid Based Cryptosystems

Kate Berry
10 December 2009

Background on Braids

Definition: For $n \geq 2$, the braid group B_{n} is defined by:

$$
\left.\left\langle\sigma_{1}, \ldots, \sigma_{n-1} ; \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { for }\right| i-j \mid \geqslant 2, \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} \text { for }|i-j|=1\right\rangle
$$

For each n, the identity mapping embeds B_{n} into B_{n+1} so that the groups B_{n} arrange into a more complex grouping
Each σ_{i} can be seen as a projection of a three dimensional figure

Background on Braids

Two braids p, p^{\prime} are conjugate if $p^{\prime}=s p s^{-1}$ for some braid s.
The Conjugacy Problem is the question of algorithmically recognizing whether two braids p, p ' are conjugate

The Conjugator Search Problem is the related question of finding a conjugating braid for a pair (p, p^{\prime}) of conjugate braids, i.e., finding s satisfying $p^{\prime}=s p s^{-1}$.

Braid Based Key Exchange The Anshel-Anshel-Goldfield Scheme

The public key consists of two sets of braids, $p_{1}, \ldots, p_{1}, q_{1}, \ldots, q_{m}$, in B_{n}.
Alice's secret key is a word u on I letters and their inverses
Bob's secret key is a word v on m letters and their inverses

```
- A computes the braid s=u(\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{\ell}{}),\mathrm{ , and uses it to compute the}
conjugates }\mp@subsup{q}{1}{\prime}=s\mp@subsup{q}{1}{}\mp@subsup{s}{}{-1},\ldots,\mp@subsup{q}{m}{\prime}=s\mp@subsup{q}{m}{}\mp@subsup{s}{}{-1};\mathrm{ ; she sends }\mp@subsup{q}{1}{\prime},\ldots,\mp@subsup{q}{m}{\prime}\mathrm{ ;
- B computes the braid r=v(\mp@subsup{q}{1}{},\ldots,\mp@subsup{q}{m}{}),\mathrm{ , and uses it to compute the}
conjugates }\mp@subsup{p}{1}{\prime}=r\mp@subsup{p}{1}{}\mp@subsup{r}{}{-1},\ldots,\mp@subsup{p}{\ell}{\prime}=r\mp@subsup{p}{\ell}{}\mp@subsup{r}{}{-1}\mathrm{ ; he sends }\mp@subsup{p}{1}{\prime},\ldots,\mp@subsup{p}{\ell}{\prime}
- A computes }\mp@subsup{t}{A}{}=su(\mp@subsup{p}{1}{\prime},\ldots,\mp@subsup{p}{\ell}{\prime}\mp@subsup{)}{}{-1}
- B computes }\mp@subsup{t}{\textrm{B}}{}=v(\mp@subsup{q}{1}{\prime},\ldots,\mp@subsup{q}{m}{\prime})\mp@subsup{r}{}{-1}\mathrm{ .
The common key is }\mp@subsup{t}{\textrm{A}}{}=\mp@subsup{t}{\textrm{B}}{}\mathrm{ .
```

To check this, we can see that

$$
\begin{aligned}
& t_{\mathrm{A}}=\operatorname{su(p_{1}^{\prime },\ldots ,p_{\ell }^{\prime })^{-1}=\operatorname {sru}u(p_{1},\ldots ,p_{\ell })^{-1}r^{-1}} \\
& =s r s^{-1} r^{-1}=\operatorname{sv}\left(q_{1}, \ldots, q_{m}\right) s^{-1} r^{-1}=v\left(q_{1}^{\prime}, \ldots, q_{m}^{\prime}\right) r^{-1}=t_{\mathrm{B}}
\end{aligned}
$$

Braid Based Key Exchange: A Diffie-Hellman-like Scheme

Braids involving disjoint sets of strands commute.
Let $L B_{n}$ the subgroup of $B n$ generated by $\sigma_{1}, \ldots, \sigma_{m-1}$ and $U B_{n}$ generated by $\sigma_{m+1}, \ldots, \sigma_{n-1}$ with $m=n / 2$,
Note that every braid in $L B_{n}$ commutes with every braid in $U B_{n}$.
The public key consists of one braid p in B_{n}
Alice's secret key s is in $L B_{n}$ and Bob's secret key r is in $U B_{n}$

> - A computes the conjugate $p^{\prime}=s p s^{-1}$, and sends it to B ;
> - B computes the conjugate $p^{\prime \prime}=r p r^{-1}$, and sends it to A ;
> - A computes $t_{\mathrm{A}}=s p^{\prime \prime} s^{-1}$;
> - B computes $t_{\mathrm{B}}=r p^{\prime} r^{-1}$.
> The common key is $t_{\mathrm{A}}=t_{\mathrm{B}}$.

Thus because s and r commute, we have

$$
t_{\mathrm{A}}=s p^{\prime \prime} s^{-1}=s r p r^{-1} s^{-1}=r s p s^{-1} r^{-1}=r p^{\prime} r^{-1}=t_{\mathrm{B}} .
$$

Authentication: A Diffie-Hellman-like Scheme

The public key is a pair of conjugate braids $\left(p, p^{\prime}\right)$ in B_{n} with $p^{\prime}=s p s^{-1}$,
Alice's private key is the braid s used to conjugate p into p '
s belongs in $L B_{n}$ and h is a collision free, one way hash function on B_{n}

```
- B chooses a random braid r in UB
p
- A sends the response y=h(sp\mp@subsup{p}{}{\prime\prime}\mp@subsup{s}{}{-1});
- B checks }y=h(r\mp@subsup{p}{}{\prime}\mp@subsup{r}{}{-1})
```

the braids r and s commute so $r p^{\prime} r^{-1}=s p^{\prime \prime} s^{-1}$.

Authentication: A Fiat-Shamir-like Scheme

As before, the public keys are a pair of conjugate braids $\left(p, p^{\prime}\right)$ with $p^{\prime}=s p s^{-1}$, while s, the conjugating braid, is Alice's private key.

In contrast to the previous schemes, both p and s lie in B_{n}. We still assume that h is a collision-free one-way hash function on B_{n}. The authentication procedure consists in repeating k times the following three exchanges:

> - A chooses a random braid r in B_{n}, and she sends the commitment $x=h\left(r p^{\prime} r^{-1}\right)$;
> - B chooses a random bit c and sends it to A;
> - For $c=0$, A sends $y=r$, and B checks $x=h\left(y p^{\prime} y^{-1}\right)$;
> - For $c=1$, A sends $y=r s$, and B checks $x=h\left(y p y^{-1}\right)$.

Braid Based Signature

The public keys are a pair of conjugate braids $\left(p, p^{\prime}\right)$ with $p^{\prime}=s p s^{-1}, s$ is Alice's private key; the braids p and s belong to B_{n}. We use H for a one-way collision-free hash function from $\{0,1\} *$ to B_{n} we use \sim for conjugacy in B_{n}.
The first scheme is as follows:

- A signs the message m with $q^{\prime}=s q s^{-1}$, where $q=H(m)$;
- B checks $q^{\prime} \sim q$ and $p^{\prime} q^{\prime} \sim p q$.

A possible weakness of the previous scheme lies in that repeated uses disclose many conjugate pairs $\left(q_{i}, q_{i}\right)$ associated with the common conjugator s. To avoid this, the scheme can be modified by incorporating an additional random braid.

- A chooses a random braid r in B_{n};
- A signs the message m with the triple $\left(p^{\prime \prime}, q^{\prime \prime}, q^{\prime}\right)$, where $p^{\prime \prime}=r p r^{-1}$,
$q=H\left(m h\left(p^{\prime \prime}\right)\right), q^{\prime \prime}=r q r^{-1}$, and $q^{\prime}=r s^{-1} q s r^{-1}$;
- B checks $p^{\prime \prime} \sim p, q^{\prime \prime} \sim q^{\prime} \sim q, p^{\prime \prime} q^{\prime \prime} \sim p q$, and $p^{\prime \prime} q^{\prime} \sim p^{\prime} q$.

References

Dehornoy, Patrick. Braid-based cryptography. Contemporary Mathematics. http://www.math.unicaen.fr/~dehornoy/Surveys/Dgw.pdf, 2004.

Weisstein, Eric W. "Braid Group." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BraidGroup.html

