Braid Based Cryptosystems

Kate Berry 10 December 2009

Background on Braids

Definition: For $n \ge 2$, the braid group B_n is defined by:

$$\langle \sigma_1, \dots, \sigma_{n-1}; \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2, \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ for } |i-j| = 1 \rangle$$

For each n, the identity mapping embeds B_n into B_{n+1} so that the groups B_n arrange into a more complex grouping

Each σ_i can be seen as a projection of a three dimensional figure

Background on Braids

Two braids *p*, *p*' are *conjugate* if $p' = sps^{-1}$ for some braid *s*.

The *Conjugacy Problem* is the question of algorithmically recognizing whether two braids *p*, *p*' are conjugate

The Conjugator Search Problem is the related question of finding a conjugating braid for a pair (p, p') of conjugate braids, *i.e.*, finding s satisfying $p' = sps^{-1}$.

Braid Based Key Exchange The Anshel-Anshel-Goldfield Scheme

The public key consists of two sets of braids, p_1, \dots, p_l , q_1, \dots, q_m , in B_n .

Alice's secret key is a word u on I letters and their inverses Bob's secret key is a word v on m letters and their inverses

> • A computes the braid $s = u(p_1, \ldots, p_\ell)$, and uses it to compute the conjugates $q'_1 = sq_1s^{-1}, \ldots, q'_m = sq_ms^{-1}$; she sends q'_1, \ldots, q'_m ; • B computes the braid $r = v(q_1, \ldots, q_m)$, and uses it to compute the conjugates $p'_1 = rp_1r^{-1}, \ldots, p'_\ell = rp_\ell r^{-1}$; he sends p'_1, \ldots, p'_ℓ ; • A computes $t_A = s u(p'_1, \ldots, p'_\ell)^{-1}$; • B computes $t_B = v(q'_1, \ldots, q'_m) r^{-1}$. The common key is $t_A = t_B$.

To check this, we can see that $t_{A} = s u(p'_{1}, \dots, p'_{\ell})^{-1} = s r u(p_{1}, \dots, p_{\ell})^{-1} r^{-1}$ $= s r s^{-1} r^{-1} = s v(q_{1}, \dots, q_{m}) s^{-1} r^{-1} = v(q'_{1}, \dots, q'_{m}) r^{-1} = t_{B}$

Braid Based Key Exchange: A Diffie-Hellman-like Scheme

Braids involving disjoint sets of strands commute. Let LB_n the subgroup of Bn generated by $\sigma_1, \ldots, \sigma_{m-1}$ and UB_n generated by $\sigma_{m+1}, \ldots, \sigma_{n-1}$ with m = n/2, Note that every braid in LB_n commutes with every braid in UB_n .

The public key consists of one braid p in B_n Alice's secret key s is in LB_n and Bob's secret key r is in UB_n

- A computes the conjugate $p' = sps^{-1}$, and sends it to B;
- B computes the conjugate $p'' = rpr^{-1}$, and sends it to A;
- A computes $t_A = s p'' s^{-1}$;
- B computes $t_{\rm B} = r p' r^{-1}$.
- The common key is $t_A = t_B$.

Thus because s and r commute, we have

$$t_{\rm A} = s \, p^{\prime \prime} \, s^{-1} = s \, r \, p \, r^{-1} \, s^{-1} = r \, s \, p \, s^{-1} \, r^{-1} = r \, p^{\prime} \, r^{-1} = t_{\rm B}.$$

Authentication: A Diffie-Hellman-like Scheme

The public key is a pair of conjugate braids (p, p') in B_n with p'=sps⁻¹, Alice's private key is the braid s used to conjugate p into p' s belongs in LB_n and h is a collision free, one way hash function on B_n

- B chooses a random braid r in $U\!B_n,$ and he sends the challenge $p^{\prime\prime}=rpr^{-1}$ to A;
- A sends the response $y = h(sp''s^{-1});$
- B checks $y = h(rp'r^{-1})$.

the braids *r* and *s* commute so $rp'r^{-1} = sp''s^{-1}$.

Authentication: A Fiat-Shamir-like Scheme

As before, the public keys are a pair of conjugate braids (p, p') with $p' = sps^{-1}$, while s, the conjugating braid, is Alice's private key.

In contrast to the previous schemes, both p and s lie in B_n . We still assume that h is a collision-free one-way hash function on B_n . The authentication procedure consists in repeating k times the following three exchanges:

- A chooses a random braid r in B_n , and she sends the *commitment* $x = h(rp'r^{-1});$
- B chooses a random bit c and sends it to A;
- For c = 0, A sends y = r, and B checks $x = h(yp'y^{-1})$;
- For c = 1, A sends y = rs, and B checks $x = h(ypy^{-1})$.

Braid Based Signature

The public keys are a pair of conjugate braids (p, p') with $p' = sps^{-1}$, s is Alice's private key; the braids p and s belong to B_n . We use H for a one-way collision-free hash function from $\{0, 1\} *$ to B_n we use ~ for conjugacy in B_n . The first scheme is as follows:

- A signs the message m with $q' = sqs^{-1}$, where q = H(m);
- B checks $q' \sim q$ and $p'q' \sim pq$.

A possible weakness of the previous scheme lies in that repeated uses disclose many conjugate pairs (q_i , q_i) associated with the common conjugator *s*. To avoid this, the scheme can be modified by incorporating an additional random braid.

- A chooses a random braid r in B_n ;
- A signs the message m with the triple (p'', q'', q'), where $p'' = rpr^{-1}$,
- $q=H(mh(p'')),\,q''=rqr^{-1},\,{\rm and}~q'=rs^{-1}qsr^{-1};$
- \bullet B checks $p^{\prime\prime} \sim p, \, q^{\prime\prime} \sim q^\prime \sim q, \, p^{\prime\prime}q^{\prime\prime} \sim pq, \, {\rm and} \, p^{\prime\prime}q^\prime \sim p^\prime q.$

References

Dehornoy, Patrick. *Braid-based cryptography.* Contemporary Mathematics. <u>http://www.math.unicaen.fr/~dehornoy/Surveys/Dgw.pdf</u>, 2004.

Weisstein, Eric W. "Braid Group." From MathWorld--A Wolfram Web Resource. <u>http://mathworld.wolfram.com/BraidGroup.html</u>