Signature Schemes

CS 6750 Lecture 6

October 15, 2009

Riccardo Pucella

Signatures

- · Signatures in "real life" have a number of properties
 - They specify the person "responsible" for a document
 - E.g. that it has been produced by the person, or that the person agrees with the document
 - Physically attached to a particular document
 - Easily verifiable by third parties
- We want a similar mechanism for digital documents
- Some difficulties:
 - Need to bind signature to document
 - Need to ensure verifiability (and avoid forgeries)

Formal Definition

A signature scheme is a tuple (P,A,K,S,V) where:

- P is a finite set of possible messages
- A is a finite set of possible signatures
- K (the keyspace) is a finite set of possible keys
- \bullet For all k, there is a signature algorithm sig_k in S and a verification algorithm ver_k in V such that
 - $sig_k : P \rightarrow A$
 - $ver_k : P \times A \rightarrow \{true, false\}$
 - $ver_k(x,y) = true iff y=sig_k(x)$
- A pair $(x,y) \in P \times A$ is called a signed message

Example: RSA Signatures

 The RSA cryptosystem (in fact, most public key cryptosystems) can be used as a signature scheme

• Take:

- $sig_k(x) = d_k(x)$
- $ver_k(x,y) = (x = ? e_k(y))$
- Only user can sign (because decryption is private)
- Anyone can verify (because encryption is public)

Signing and Encrypting

- Suppose you want to sign and encrypt a piece of data
 - Where encryption is public key (why is this important?)
 - Public key cryptography does not say anything about the sender
- Two possibilities:
 - First encrypt, then sign: $x \rightarrow (e_{ke}(x), sig_{ks}(e_{ke}(x)))$
 - But adversary could replace by $sig_{ke'}(e_{ke}(x))$ making it seem the message came from someone else
 - First sign, then encrypt: $x \rightarrow (e_{ke}(x), sig_{ks}(x))$
 - Better make sure signature does not leak info!

Possible Attacks

- (Alice is the signer, Oscar the attacker)
- Key-only attack
 - Oscar possesses Alice's public verification algorithm
- Known message attack
 - Oscar possesses a list of signed messages (x_i, y_i)
- Chosen message attack
 - Oscar queries Alice for the signatures of a list of messages x_i

Possible Adversarial Goals

- Total break
 - Oscar can derive Alice's private signing algorithm
- Selective forgery
 - Oscar can create a valid signature on a message chosen by someone else, with some nonnegligible probability
- Existential forgery
 - Oscar can create a valid signature for at least one message

Some Comments

- Cannot have unconditional security, only computational or provable security
- Attacks above are similar to those against MACs
 - For MACs, we mostly concentrated on existential forgeries against chosen message attacks
- Existential forgeries against chosen message attacks:
 - Least damage against worst attacker
 - The minimum you should ask for

Security of RSA Signatures

- Existential forgery using a key-only attack:
 - · Choose a random y
 - Compute $x = e_k(y)$
 - We have $y = sig_k(x)$, a valid signature of x
- Existential forgery using a known-message attack:
 - Suppose $y = sig_k(x)$ and $y' = sig_k(x')$
 - Can check ek (y y' mod n) = x x' mod n
 - So y y' mod n = sig_k (x x' mod n)
- Existential forgery using a chosen message attack:
 - To get a signature for x, find $x_1 x_2 = x \mod n$
 - Query for signatures of x₁ and x₂
 - Apply previous attack

Signatures and Hashing

- The easiest way to get around the above problems is to use a cryptographic hash function
 - Given message x
 - Produce digest h(x)
 - Sign digest h(x) to create $(x,sig_k(h(x)))$
- To verify:
 - Get (x,y)
 - Compute h(x)
 - Check ver_k (h(x),y)

Use of Hashing for Signatures

- Existential forgery using a chosen message attack
 - Oscar finds x,x' s.t. h(x)=h(x')
 - He gives x to Alice and gets her to sign h(x)
 - Then $(x', sig_k(h(x)))$ is a valid signed message
 - Prevented by having h collision resistant
- Existential forgery using a known message attack
 - Oscar starts with (x,y), where $y = sig_k(h(x))$
 - He computes h(x) and tries to find x' s.t. h(x') = h(x)
 - Prevented by having h second preimage resistant
- Existential forgery using a key-only attack
 - (If signature scheme has existential forgery using a key-only attack)
 - Oscar chooses message digest and finds a forgery z for it
 - Then tries to find x s.t. h(x)=z
 - Prevented by having h preimage resistant

Example: ElGamal Signature Scheme

- Let p be a prime s.t. discrete log in Z_p is hard
- Let a be a primitive element in Z_p*
- $P = Z_p^*, A = Z_p^* \times Z_{p-1}$
- $K = \{(p,\alpha,a,\beta) \mid \beta = \alpha^a \pmod{p}\}$
- For $k = (p,\alpha,a,\beta)$ and $t \in Z_{p-1}^*$
 - $\gamma = \alpha^{\dagger} \mod p$
 - $\operatorname{sig}_{k}(x,t) = (\gamma, (x-a\gamma)t^{-1} \pmod{p-1})$
 - $\operatorname{ver}_k(x,(\gamma,\delta)) = (\beta^{\gamma}\gamma^{\delta} = ?\alpha^{\times} \pmod{p})$
- Exercise: check that verk (x,sigk (x,t)) = true

Security of ElGamal Scheme

- Forging a signature (γ, δ) without knowing a
 - Choosing γ and finding corresponding δ amounts to finding discrete log
 - Choosing δ and finding corresponding γ amounts to solving $\beta^{\gamma}\gamma^{\delta} = \alpha^{\times}$ (mod p)
 - No one knows the difficulty of this problem (believed to be hard)
 - Choosing γ and δ and solving for the message amounts to finding discrete log
 - Existential forgery with a key-only attack:
 - Sign a random message by choosing γ , δ and message simultaneously (p.289)

Variant 1: Schnorr Signature Scheme

- ElGamal requires a large modulus p to be secure
- A 1024 bit modulus leads to a 2048 bit signature
 - Too large for some uses of signatures (smartcards)
- Idea: use a subgroup of Z_p of size q (q << p)
- Let p be a prime s.t. discrete log is hard in Z_p*
- Let q be a prime that divides p-1
- Let α in \mathbb{Z}_p^* be a q-th root of 1 mod p
- Let $h: \{0,1\}^* \to Z_q$ be a secure hash function
- $P = \{0,1\}^*, A = Z_q \times Z_q$
- $K = \{(p,q,\alpha,a,\beta) \mid \beta = \alpha^a \pmod{p}\}$
- For $k=(p,q,\alpha,a,\beta)$ and $1 \le t \le q-1$:
 - $\gamma = h(x || \alpha^{\dagger} \mod p)$
 - $sig_k(x,t) = (\gamma, t+a\gamma \mod q)$
 - $\operatorname{ver}_k(x,(\gamma,\delta)) = (h(x || \alpha^{\delta}\beta^{-\gamma} \mod p) =? \gamma$

Variant 2: DSA

- DSA = Digital Signature Algorithm
- Let p be a prime s.t. discrete log is hard in Z_p
 - bitlength of $p = 0 \pmod{64}$, $512 \le bitlength \le 1024$
- Let q be a 160 bit prime that divides p-1
- Let α in \mathbb{Z}_p^* be a q-th root of 1 mod p
- Let $h: \{0,1\}^* \to Z_q$ be a secure hash function
- $P = \{0,1\}^*, A = Z_q^* \times Z_q^*$
- $K = \{(p,q,\alpha,a,\beta) \mid \beta = \alpha^a \pmod{p}\}$
- For $k=(p,q,\alpha,a,\beta)$ and $1 \le t \le q-1$:
 - $\gamma = (\alpha^{\dagger} \mod p) \mod q$
 - $sig_k(x,t) = (\gamma, (SHA1(x)+a\gamma)t^{-1} \mod q)$
 - $\operatorname{ver}_k(x,(\gamma,\delta)) = (\alpha^{e1}\beta^{e2} \mod p) \mod q =? \gamma$
 - e1 = SHA1(x) δ^{-1} mod q
 - $e2 = \gamma \delta^{-1} \mod q$

Variant 3: Elliptic Curve DSA

- Modification of the DSA to use elliptic curves
- Instead of choosing α , β , use A and B two points on an elliptic curve over Z_p
- Roughly speaking, instead of: (α[†] mod p) mod q use the x coordinate of the point tA, mod q
- The rest of the computation is as before

Provably Secure Signature Schemes

- The previous examples were (to the best of our knowledge) computationally secure signature scheme
- Here is a provably secure signature scheme
 - As long as only one message is signed
- Let m be a positive integer
- Let $f: Y \rightarrow Z$ be a one-way function
- $P = \{0,1\}^m, A = Y^m$
- Choose y_{i,j} in Y at random for 1≤i≤m, j=0,1
- Let $z_{i,j} = f(y_{i,j})$
- A key = 2m y's and 2m z's (y's private, z's public)
 - $sig_k(x_1,...,x_m) = (y_{1,x_1},...,y_{m,x_m})$
 - $\text{ver}_k ((x_1,...,x_m),(a_1,...,a_m)) = (f(a_i) =? z_{i,x_i}) \text{ for all } i$

Argument for Security

- Argument for provable security:
 - Existential forgeries using a key-only attack
 - Assume that f is a one-way function
 - Show that if there is an existential forgery using a key-only attack, then there is an algorithm that finds preimage of random elements in the image of f with probability at least 1/2
- We need the restriction to one signature only
 - If the attacker gets two messages signed with the same key, then can easily construct signatures for other messages
 - (0,1,1) and (1,0,1) can give signatures for (0,0,1), (1,1,1)

Undeniable Signature Schemes

- Introduced by Chaum and van Antwerpen in 1989
 - Scenario: want a signature to be unverifiable without the signer
 - But what's to prevent signer from disavowing signature?
- Let p,q primes, p = 2q+1, and discrete log hard in Z_p^*
- Let α in Z_p^* be an element of order q
- $G = multiplicative subgroup of <math>Z_p^*$ of order q
- P = A = G
- $K = \{(p,\alpha,a,\beta) \mid \beta = \alpha^a \mod p\}$
- For key $k=(p,\alpha,a,\beta)$ and x in G:
 - $sig_k(x) = x^a \mod p$
- To verify (x,y): pick e₁,e₂ at random in Z_q
 - Compute $c = y^{e1}\beta^{e2}$
 - Signer computes $d = c^{inv(a) \mod q} \mod p$ (where $inv(a) = a^{-1}$)
 - y is a valid signature iff $d = x^{e1}\alpha^{e2} \mod p$

Disavowal Protocol

- Can prove that Alice cannot fool Bob into accepting a fraudulent signature (except with very small probability = 1/q)
- What if Bob wants to make sure that a claimed forgery is one?
 - 1. Bob chooses e_1,e_2 at random in \mathbb{Z}_q^*
 - 2. Bob computes $c = y^{e1}\beta^{e2} \mod p$; sends it to Alice
 - 3. Alice computes $d = c^{inv(a) \mod q} \mod p$; sends it to Bob
 - 4. Bob verifies $d \neq x^{e1}\alpha^{e2} \mod p$
 - 5. Bob chooses f_1, f_2 at random, in Z_q^*
 - 6. Bob computes $C = y^{f1}\beta^{f2} \mod p$; sends it to Alice
 - 7. Alice computes $D = C^{inv(a) \mod q} \mod p$; sends it to Bob
 - 8. Bob verifies $D \neq x^{f1}\alpha^{f2} \mod p$
 - 9. Bob concludes y is a forgery iff $(d\alpha^{-e^2})^{f_1} = (D\alpha^{-f_2})^{e_1} \mod p$

Why Does This Work?

- Alice can convince Bob that an invalid signature is a forgery
 - If $y \neq x^a \mod p$ and Alice and Bob follow the protocol, then the check in last step succeeds
- Alice cannot make Bob believe that a valid signature is a forgery except with a very small probability
 - Intuition: since she cannot recover e_1,e_2,f_1,f_2 , she will have difficulty coming up with d and D that fail steps 4 and 8, but still pass step 9
 - See Stinson for details