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Problems with Shared Keys
All cryptosystems we have looked at until now have 
required a shared key between senders and receivers

Problems:
How do you establish the keys and distribute them?
In a network of N people, need N2-N keys total
Any new person joining requires creating and 
distributing N new keys.

Solutions:
Figure out how to distribute keys easily
Find an altogether different approach



Public-Key Cryptography
Diffie and Hellman (1976) proposed a scheme where 
keys need not be shared

Idea: provide every agent with two different keys
One key is used to encrypt
One key is used to decrypt
The key to encrypt is made public
The key to decrypt is kept private (secret)

Anyone can send an encrypted message to Alice by 
using her public encryption key

Only Alice can read the encrypted message because 
she has the private decryption key



One-Way Trapdoor Functions
For this to work, need a way to find encryption and 
decryption keys such that knowing the encryption key 
does not let you derive the decryption key

Diffie and Hellman’s idea: one-way trapdoor functions
One-way: a function whose inverse is hard to compute
Trapdoor: but if you have a specific hint, you can 
invert the function easily

To encrypt, apply the one-way function
To decrypt, use the hint to invert the function

Challenge: are there any one-way trapdoor functions?



Candidates
Two most likely one-way trap door function candidates:

Factorization   ➞  RSA cryptosystem
Discrete logarithms  ➞  ElGamal cryptosystem

No one has ever proved that these are one-way 
trapdoor functions

It’s proving that they are one-way that’s a problem

In fact, no one knows for sure that there exists a 
one-way function

All known candidates involve number theory or algebra



Number Theory on a Slide
Recall: ax≡1 mod n has a solution for x iff gcd(a,n)=1
φ(n) = # of integers k<n such that gcd(n,k)=1

Define Zn* = {a : gcd(a,n)=1}
For prime p, Zp*={1,...,p-1} = Zp-1

If we define ab = ab (mod n), then Zn* is an Abelian 
group under multiplication 

i.e., behaves like integers under addition

Theorems:
If b∈Zn* then bφ(n)≡1 mod n
If p is prime and b∈Zp* then bp≡b mod p



RSA Cryptosystem
Rivest, Shamir and Adleman (1978) 

Some classified independent work in the UK in 1973

Take n = pq (where p and q are primes)
P = C = Zn

K = {(n,p,q,a,b) : ab≡1 mod φ(n)}
For k=(n,p,q,a,b)

ek(x) = xb (mod n)     - need only n,b
dk(y) = ya (mod n)

Choose p,q large, compute n=pq. φ(n)=(p-1)(q-1)
Choose b with gcd(b,φ(n))=1
Let a=b-1 (mod φ(n)), publish n,b and keep p,q,a private



Sanity Check

Need to check that encryption and decryption are 
inverses

Let x∈Zn* (slightly different argument if x∈Zn-Zn*)
Exercise: derive that dk(ek(x)) = x

Hint: Since ab≡1 mod φ(n), then ab = tφ(n)+1 for some 
t≥1



Security of RSA
Security of RSA based on the belief that ek is a one-
way function

Strong evidence, but we don’t know for sure
It is a trapdoor function. What’s the hint? The 
factorization n=pq. With a,n,p,q, can recover b by 
taking b = a-1 (mod φ(n))

Need n to be hard to factor into p,q -- p and q in 
practice need to be large enough (512 bits and more)

How do you find primes of this size?
Best: generate numbers randomly, and test primality
Chance of finding a prime ∼ 1/355
Primality testing can be done fast (Stinson §5.4)



Attacks Against RSA
Factoring attacks

HUGE literature -- see Stinson §5.6

Compute φ(n) directly from n
No easier than factoring

If you have n and φ(n), it is almost trivial to get 
factorization by solving:
     n = pq     ➞  q=n/p
 φ(n) = (p-1)(q-1)   ➞  φ(n)=(p-1)(n/p-1)

Find a directly? 
Can also show that given a and n you can find the 
factorization p,q



Discrete Logarithms

Let G be any multiplicative group (e.g., Zn*)
The order of an element α∈G is the smallest n with 
αn=1 in G
Given α∈G of order n, <α>={α0,α1,...,αn-1}
<α> is a subgroup of G
α is a primitive element of G if <α> = G

Given G a multiplicative group, α∈G of order n, β∈<α>:
the discrete logarithm of β is the unique integer d<n 
with  αd = β in G



Discrete Logs in Zp*

Why are discrete logs interesting?
  Computing discrete logs is believed to be hard for
  some multiplicative groups

Theorem: 
   Zn* = <α> for some α∈Zn*

The ElGamal cryptosystem is based on discrete logs in 
Zp* for some prime p

Believed to be hard for Zp* with p > 300 digits and 
p-1 with at least one large prime factor



ElGamal Cryptosystem
Let p be a prime such that discrete logs in Zp* are 
believed hard to compute
Let α be a primitive element of Zp*

P = Zp*

C = Zp* x Zp*

K = {(p,α,d,β) : β = αd (mod p)}
For k=(p,α,d,β)

ek(x,k) = (αk (mod p), xβk (mod p))  - need only p,α,β
       for some k∈Zp* chosen at random
dk(y1,y2) = y2(y1d)-1  (mod p)

Chose α and d, compute β=αd (mod p)
Publish p,α,β, keep d private



ElGamal Cryptosystem
Let p be a prime such that discrete logs in Zp* are 
believed hard to compute
Let α be a primitive element of Zp*

P = Zp*

C = Zp* x Zp*

K = {(p,α,d,β) : β = αd (mod p)}
For k=(p,α,d,β)

ek(x,k) = (αk (mod p), xβk (mod p))  - need only p,α,β
       for some k∈Zp* chosen at random
dk(y1,y2) = y2(y1d)-1  (mod p)

Chose α and d, compute β=αd (mod p)
Publish p,α,β, keep d private

Hide x with βk

pass k along as αk



Sanity Check
Need to check that encryption and decryption are 
inverses

Exercise: derive that dk(ek(x,k)) = x, for any k
E.g., dk(αk (mod p), xβk (mod p)) = x

Given p,α,β, the attacker “needs” to compute d such 
that αd≡β (mod p) 

Stinson §6.2 and §6.3 present some of the best 
known algorithms to find discrete logs



Elliptic Curves
The ElGamal cryptosystem can be implemented in any 
group where the discrete log problem is (believed to 
be) difficult

Historically, Zp* has been used

Other groups have become popular

Elliptic curves modulo a prime p>3:
Let a,b∈Zp such that 4a3+27b2≠0
A nonsingular elliptic curve modulo p is the set of 
all E of all x,y∈Zp such that y2 ≡ x3+ax+b  mod p
(plus a special point O -- the point at infinity)
E is a group by defining an operation + on points



Some Conclusions
Public-key cryptography solves the key distribution 
problem by eliminating it

Public keys are published in some repository
Private keys are kept private

Comes at a cost: public-key cryptography is much slower 
than shared-key cryptography (such as DES)

Not ideal for long messages

Hybrid solution (PGP-style):
Alice wants to communicate with Bob
Alice creates a shared key, sends it to Bob via a 
public-key cryptosystem
Alice sends message to Bob via the shared key


