Classical Cryptography

CS 6750 Lecture 1

September 10, 2009

Riccardo Pucella

Goals of Classical Cryptography

- Alice wants to send message X to Bob
- Oscar is on the wire, listening to all communications
- Alice and Bob share a secret K
- Alice converts X into Y using secret K
- Alice sends Y to Bob
- Bob converts Y back to X using secret K

- Goal: protect message X from Oscar
 - Better goal: protect secret K from Oscar

Shift Cipher

- Earliest example of a cryptosystem
- Given a string M of letters
 - For simplicity, assume only capital letters of English
 - Remove spaces
- Key k: a number between 0 and 25
- To encrypt, replace every letter by the one k places down the alphabet (wrapping around)
- To decrypt, replace every letter by the one k places up the alphabet (wrapping around)
- Example: k=10, THISISSTUPID → DRSCSCCDEZSN

Definition of Cryptosystem

- A cryptosystem is a tuple (P,C,K,E,D) such that:
 - 1.P is a finite set of possible plaintexts
 - 2.C is a finite set of possible ciphertexts
 - 3.K is a finite set of possible keys (keyspace)
 - 4. For every k, there is an encryption function $e_k \in E$ and decryption function $d_k \in D$ such that $d_k(e_k(x)) = x$ for all plaintexts x.
- Encryption function assumed to be injective
- Encrypting a message:

$$x = x_1 x_2 ... x_n \rightarrow e_k(x) = e_k(x_1) e_k(x_2) ... e_k(x_n)$$

Properties of Cryptosystems

- Encryption and decryption functions can be efficiently computed
- Given a ciphertext, it should be difficult for an opponent to identify the encryption key and the plaintext

- For the last to hold, the key space must be large enough!
 - · Otherwise, may be able to iterate through all keys

Shift Cipher, Revisited

•
$$P = Z_{26} = \{0,1,2,...,25\}$$

- Encoding: A = 0, B = 1, ..., Z = 25
- $C = Z_{26}$
- $K = Z_{26}$
- $e_k = ?$
 - Add k, and wraparound...

Modular Arithmetic

- Congruence
 - a, b: integers m: positive integer
 - $a \equiv b \pmod{m}$ iff m divides a-b
 - a congruent to b modulo m
 - Examples: $75 \equiv 11 \pmod{8}$ $75 \equiv 3 \pmod{8}$
 - Given m, every integer a is congruent to a unique integer in {0,...,m-1}
 - Written a (mod m)
 - Remainder of a divided by m

Modular Arithmetic

- $Z_m = \{ 0, 1, ..., m-1 \}$
- Define a + b in Z_m to be a + b (mod m)
- Define a x b in Z_m to be a x b (mod m)
- Obeys most rules of arithmetic
 - + commutative, associative, 0 additive identity
 - x commutative, associative, 1 mult. identity
 - + distributes over x
 - Formally, Z_m forms a ring
 - For a prime p, Z_p is actually a field

Shift Cipher, Formally

•
$$P = Z_{26} = \{0,1,2,...,25\}$$
 (where A=0, B=1,..., Z=25)

- $C = Z_{26}$
- $K = Z_{26}$
- $e_k(x) = x + k \pmod{26}$
- $d_k(y) = y k \pmod{26}$

• Size of the keyspace? Is this enough?

Affine Cipher

- Let's complicate the encryption function a little bit
 - $K = Z_{26} \times Z_{26}$ (tentatively)
 - $e_k(x) = (ax + b) \mod 26$, where k=(a,b)

- How do you decrypt?
 - Given a,b, and y, can you find x∈Z₂₆ such that

$$(ax+b) \equiv y \pmod{26}$$
?

or equivalently: $ax \equiv y-b \pmod{26}$?

Affine Cipher

Theorem: $ax \equiv y \pmod{m}$ has a unique solution $x \in \mathbb{Z}_m$ iff gcd(a,m)=1

- In order to decrypt, need to find a unique solution
 - Must choose only keys (a,b) such that gcd(a,26)=1
- Let a^{-1} be the solution of $ax = 1 \pmod{m}$
 - Then $a^{-1}b$ is the solution of $ax = b \pmod{m}$

Affine Cipher, Formally

- $P = C = Z_{26}$
- $K = \{ (a,b) \mid a,b \in Z_{26}, \gcd(a,26)=1 \}$
- $e_{(a,b)}(x) = ax + b \pmod{26}$
- $\bullet \ d_{(a,b)}(y) = ?$

- What is the size of the keyspace?
 - (Number of a's with $gcd(a,26)=1) \times 26$
 - φ(26) X 26

Substitution Cipher

- $P = Z_{26}$
- $C = Z_{26}$
- $K = all possible permutations of Z_{26}$
 - A permutation P is a bijection from Z₂₆ to Z₂₆
- $\bullet \ e_k(x) = k(x)$
- $\bullet \ d_k(x) = k^{-1}(x)$
 - Example
 - Shift cipher, affine cipher
- Size of keyspace?

Cryptanalysis

- Kerckhoff's Principle:
 - The opponent knows the cryptosystem being used
 - No "security through obscurity"
- Objective of an attacker
 - Identify secret key used to encrypt a ciphertext
- Different models of attackers to consider:
 - Ciphertext only attack
 - Known plaintext attack
 - Chosen plaintext attack
 - Chosen ciphertext attack

Cryptanalysis of Substitution Cipher

- Statistical cryptanalysis
 - Ciphertext only attack
- Again, assume plaintext is English, only letters
- Goal of the attacker: determine the substitution
- Idea: use statistical properties of English text

Statistical Properties of English

- Letter probabilities (Beker and Piper, 1982): p₀, ..., p₂₅
- A: 0.082, B: 0.015, C: 0.028, ...
- More useful: ordered by probabilities:
 - E: 0.120
 - T,A,O,I,N,S,H,R: [0.06, 0.09]
 - D,L: 0.04
 - C,U,M,W,F,G,Y,P,B: [0.015, 0.028]
 - V,K,J,X,Q,Z: < 0.01
- Most common digrams: TH,HE,IN,ER,AN,RE,ED,ON,ES,ST...
- Most common trigrams: THE, ING, AND, HER, ERE, ENT, ...

Statistical Cryptanalysis

General recipe:

- Identify possible encryptions of E (most common English letter)
 - T,A,O,I,N,S,H,R: probably difficult to differentiate
- Identify possible digrams starting/finishing with E (-E and E-)
- Use trigrams
 - Find 'THE'
- Identify word boundaries

Polyalphabetic Ciphers

- Previous ciphers were monoalphabetic
 - Each alphabetic character mapped to a unique alphabetic character
 - This makes statistical analysis easier
- Obvious idea
 - Polyalphabetic ciphers
 - Encrypt multiple characters at a time

Vigenère Cipher

- Let m be a positive integer (the key length)
- $P = C = K = Z_{26} \times ... \times Z_{26} = (Z_{26})^m$
- For $k = (k_1, ..., k_m)$:
 - $e_k(x_1, ..., x_m) = (x_1 + k_1 \pmod{26}, ..., x_m + k_m \pmod{m})$
 - $d_k(y_1, ..., y_m) = (y_1 k_1 \pmod{26}, ..., y_m k_m \pmod{m})$

• Size of keyspace?

Cryptanalysis of Vigenère Cipher

- Thought to thwart statistical analysis, until mid-1800
- Main idea: first figure out key length (m)
 - Two identical segments of plaintext are encrypted to the same ciphertext if they are δ position apart, where δ = 0 (mod m)
 - Kasiski Test: find all identical segments of length > 3 and record the distance between them: δ_1 , δ_2 , ...
 - m divides $gcd(\delta_1, \delta_2,...)$

Index of Coincidence

- We can get further evidence for the value of m as follows
- The index of coincidence of a string $X = x_1...x_n$ is the probability that two random elements of X are identical
 - Written I_c(X)
- Let f_i be the # of occurrences of letter i in X; $I_c(X) = ?$
- For an arbitrary string of English text, $I_c(X) \approx 0.065$
 - If X is a shift ciphertext from English, $I_c(X) \approx 0.065$
- For m=1,2,3,... decompose ciphertext into substrings y_i of all mth letters; compute I_c of all substrings
 - I_cs will be ≈ 0.065 for the right m
 - I_cs will be ≈ 0.038 for wrong m

Then what?

- Once you have a guess for m, how do you get keys?
- Each substring yi:
 - Has length n' = n/m
 - Encrypted by a shift k_i
 - Probability distribution of letters: f_0/n' , ..., f_{25}/n'
- f_{0+ki} (mod 26)/n', ..., f_{25+ki} (mod 26)/n' should be close to p₀, ..., p₂₅
- Let $M_g = \sum_{i=0,...,25} p_i (f_{i+g \pmod{26}} / n')$
 - If $g = k_i$, then $M_g \approx 0.065$
 - If $g \neq k_i$, then M_g is usually smaller

Hill Cipher

- A more complex form of polyalphabetic cipher
- Again, let m be a positive integer
- $P = C = (Z_{26})^m$
- To encrypt: (case m=2)
 - Take linear combinations of plaintext (x_1, x_2)
 - E.g., $y_1 = 11 \times_1 + 3 \times_2 \pmod{26}$ $y_2 = 8 \times_1 + 7 \times_2 \pmod{26}$
 - Can be written as a matrix multiplication (mod 26)

Hill Cipher, Continued

- $K = Mat(Z_{26}, m)$ (tentatively)
- $e_k (x_1, ..., x_m) = (x_1, ..., x_m) k$
- $d_k (y_1, ..., y_m) = ?$
 - Similar problem as for affine ciphers
 - Want to be able to reconstruct plaintext
 - Solve m linear equations (mod 26)
 - I.e., find k⁻¹ such that kk⁻¹ is the identity matrix
 - Need a key k to have an inverse matrix k⁻¹

Cryptanalysis of Hill Cipher

- Much harder to break with ciphertext only
- Easy with known plaintext
- Recall: want to find secret matrix k
- Assumptions:
 - m is known
 - Construct m distinct plaintext-ciphertext pairs
 - (X₁, Y₁), ..., (X_m, Y_m)
- Define matrix Y with rows Y₁, ..., Y_m
- Define matrix X with rows X₁, ..., X_m
- Verify: Y = X k
- If X is invertible, then k = X⁻¹ Y!