Object-Oriented Design Lecture 20
CS 3500 Spring 2011 (Pucella) Tuesday, Mar 29, 2011

20 More on Mutation

Deciding whether to use mutable structures is all about trade-off. On the plus side, mutable
structures let you implement some things much more simply than a corresponding imple-
mentation with immutable structures — the moveable anchors from last time being a perfect
example of something that is straightforward to implement using mutation but somewhat
more painful to implement with immutable structures. On the minus side, mutable struc-
tures force you to think about sharing, and require you to keep in mind explicit diagrams
like we saw last time, in order to predict what happens when you actually end up mutating
a field of a mutable structure.

Let’s suppose that you have understood the trade-offs, and that you accept the added com-
plexity of mutable structures. In other words, you decided to have some classes with mutable
state, which generally means having mutable fields.

Even if you are okay with having mutable fields, I strongly suggest you make your fields pri-
vate, and provide getters and setters for each field that can mutate — that is, methods to get
the value of those fields, and methods to set the value of those fields. Why? Because this lets
us enforce invariants. Suppose we only want to work with anchors in the positive quadrant,
that is, points whose coordinates are nonnegative. Consider the following implementation of
anchors (which for simplicity does not define creators or an abstract class):

class Anchor (p:Point) {

// var indicates that the field can be reassigned a new value
var pos = p

def position ():Point = pos

def move (dx:Double, dy:Double):Unit =

pos = pos.move(dx,dy) // move point and reassign
// pos to be that point
override def toString ():String = "anchor(" + pos + ")"

Enforcing that only positive points can be created is easy by changing the constructor of the
class, as well as the move method:

class Anchor (p:Point) {

254

if (p.xCoord() < 0 || p.yCoord() < 0)
throw new IllegalArgumentException("Point not positive")

// var indicates that the field can be reassigned a new value
var pos = p

def position ():Point = pos

def move (dx:Double, dy:Double):Unit = {
newPos = pos.move(dx,dy) // move point and reassign
// pos to be that point
if (newPos.xCoord() < O || newPos.yCoord() < 0)
throw new RuntimeException("Point moved to negative position")
pos = newPos

3

override def toString ():String = "anchor(" + pos + ")"

(Note that the code to check the parameters is free floating in the class — any code that
does not belong to a method in a class is executed when an instance of a class is created. If
we had used a creator instead, that check would probably have gone into the creator.)

If we allow unrestricted field access, however, then anyone can just change the position and
break the invariant. Which, in this case, can lead to points having negative coordinates,
invalidating the invariant we want to preserve.

If you really want to give access to the fields to users (as opposed to forcing them to use an
operation like move), it is better to define setters, where we can check that the invariant is
maintained whenever state is changed.:

class Anchor (p:Point) {

if (p.xCoord() < 0 || p.yCoord() < 0)
throw new IllegalArgumentException("Point not positive")

// var indicates that the field can be reassigned a new value
var pos = p

def position ():Point = pos

def setPosition (newPos:Point):Unit =
if (newPos.xCoord() < O || newPos.yCoord() < 0)

255

throw new RuntimeException("Point moved to negative position")
pos = newPos

}

def move (dx:Double, dy:Double):Unit =
setPosition(pos.move(dx,dy))

override def toString ():String = "anchor(" + pos + ")"

}

Therefore, 1T will expect you all to keep fields private and use explicit setters, instead of
making fields public when you want a class to be mutable.

(Exercise: I did not bother making my field pos private in the implementation of Anchor in
last lecture. Still, I claim one cannot change the value of the field pos there from outside
anyways. Why?)

20.1 Shallow and Deep Copies

As we saw last time, if we pass an instance to a method, we are really passing the address
of the instance to the method. And if the method just takes those values and store them
somewhere, then we get sharing, which may or may not be what we want.

Recall the code we had last time, slightly modified to make Line an explicitly mutable
structure. (We saw that Line is already mutable by virtue of Anchor being mutable, we
just make Line explicitly mutable by making the start and end points mutable fields, and
adding setters.)

object Anchor {
def create (p:Point):Anchor = new AnchorRepr(p)
private class AnchorRepr (p:Point) extends Anchor {
private var pos = p
def position ():Point = pos
def move (dx:Double, dy:Double):Unit =
pos = pos.move(dx,dy) // move point and reassign

// pos to be that point

override def toString ():String = "anchor(" + pos + ")"

3

256

abstract class Anchor {

def position ():Point

def move (dx:Double, dy:Double):Unit
}
object Line {

def create (s:Anchor, e:Anchor):Line = new LineRepr(s,e)

private class LineRepr (initS:Anchor, initE:Anchor) extends Line {

initS
initE

private var s:Anchor
private var e:Anchor

def start ():Anchor = s
def end ():Anchor = e

def setStart (a:Anchor):Unit = { s = a }
def setEnd (a:Anchor):Unit = { e = a }

override def toString ():String = s + " <> " + e

abstract class Line {

def start ():Anchor

def end ():Anchor

def setStart (a:Anchor):Unit
def setEnd (a:Anchor):Unit

An example of sharing was the Line.create(a3,a3) example from last time:

Point.create(Point.cartesian(0,10))
Line.create(a3,a3)

val a3
val 12

257

ald *k-—————————- > | Anchor | <—=+ |
|- | I 4 +
| pos = *-—————————————- > | Point |
Fommm e + (I | ===
Il I | xpos =0 |
(. | ypos = 10 |
o + | o ———— +
12 *—————————- > | Line | [
| -————mmm- | (I
| 8 = k—————————mm + |
| = ko——m +
Fommmm +

The two fields s and e of the newly created Line instance end up pointing to the same
instance of Anchor, so that modifying that Anchor instance is reflected in both the start and
end position of the line.

To make our examples more interesting, consider an additional class to represent triangles
using a base line and another anchor::

object Triangle {
def create (b:Line, a:Anchor):Triangle = new TriangleRepr(b,a)
private class TriangleRepr (b:Line, a:Anchor) extends Triangle {

private var base:Line = b
private var tip:Anchor = a

base

def sidel ():Line

def side2 ():Line = Line.create(base.start(),tip)

def side3 ():Line

Line.create(base.end(),tip)

def setBase (1:Line):Unit = { base=1 }
def setTip (a:Anchor):Unit = { tip=a }

override def toString ():String = sidel() + " " + side2() + " " +
side3()
}
}

258

abstract class Triangle {

def sidel ():Line
def side2 ():Line
def side3 ():Line
def setBase (1:Line):Unit
def setTip (a:Anchor):Unit

Now we can get even more interesting sharing going between lines and points.

Consider the following definitions:

scala> val a = Anchor.create(Point.cartesian(0,0))
a: Anchor = [0.0,0.0]

scala> val b = Anchor.create(Point.cartesian(100,0))
b: Anchor = [100.0,0.0]

scala> val ¢ = Anchor.create(Point.cartesian(50,50))
c: Anchor = [50.0,50.0]

scala> val 1 = Line.create(a,b)
1: Line = [0.0,0.0] <-> [100.0,0.0]

scala> val t = Triangle.create(l,c)
t: Triangle = [0.0,0.0] <-> [100.0,0.0] [0.0,0.0] <-> [60.0,50.0] [100.0,0.0] <-> [50.

Suppose we wanted to create another triangle that looks just like t. An easy way to do that
is to simply define:

scala> val ul = t
ul: Triangle = [0.0,0.0] <-> [100.0,0.0] [0.0,0.0] <-> [50.0,50.0]
[100.0,0.0] <-> [50.0,50.0]

But of course, these is mazimal sharing between t and ul:

259

C *—————————- > | Anchor | <—=———-——- +
|- | | o
| pos = #————————————mm——— o > | Point
o + | o
| | xpos = 50
| | ypos = 50
o + | o
1 % > | Line | <=——-—- + |
| -————mmm- | I
| 8 = k—————————m + | |
| e = *—————mmm- +
o +
I
N
Fommm e +
b k—————————— > | Anchor | <+ | | |
|- | Il o m
| pos = *———————————mmmm o > | Point
o + | | | o
(I | xpos = 100 |
Il | ypos = 0O
o + []] e
a *—————————- > | Anchor | <=——+ | |
|- | (I o
| pos = ¥——————————————————- > | Point
o ——— + | | o
[| xpos =0
it + || | ypos =0
t k———mm—m o > | Triangle | || oo
R S | (I
| | base = *——————————— + |
| | tip = *-—————————————- +
| o +
|
ul *x-————- +

In particular, changing any part of one changes the other:
scala> t.setTip(Anchor.create(Point.cartesian(9,9)))

scala> ul

260

res2: Triangle = [0.0,0.0] <-> [100.0,0.0] [0.0,0.0] <-> [9.0,9.0]
[100.0,0.0] <-> [9.0,9.0]

What if we wanted the new triangle to look just like t but not share as much with t? Let’s

create a new method in Triangle that creates a copy of the current triangle that does not
share its fields.

object Triangle {
def create (b:Line, a:Anchor):Triangle = new TriangleRepr(b,a)
private class TriangleRepr (b:Line, a:Anchor) extends Triangle {

private var base:Line = b
private var tip:Anchor = a

def sidel ():Line base

def side2 ():Line

Line.create(base.start(),tip)

def side3 ():Line

Line.create(base.end(),tip)

def setBase (l:Line):Unit = { base=1 }
def setTip (a:Anchor):Unit = { tip=a }

def copy () :Triangle = new TriangleRepr(base,tip)

override def toString ():String =
side1l () + " " + side2() + " " + side3()

abstract class Triangle {

def sidel ():Line

def side2 ():Line

def side3 ():Line

def setBase (1l:Line):Unit
def setTip (a:Anchor) :Unit
def copy () :Triangle

261

Now, if we redo the above example with a,b,c,1,t, and ul as above and say:

scala> val u2 = t.copy()
u2: Triangle = [0.0,0.0] <-> [100.0,0.0] [0.0,0.0] <-> [9.0,9.0] [100.0,0.0] <-> [9.0,

we end up with less sharing between t and u2:

o m o +
C *—————————- > | Anchor | <——————- +
| ————mmm - | | tommmm e +
| pos = *——————————————— > | Point I
o + | o +
| | xpos = 50 |
| | ypos = 50 |
o + | o +
1 == > | Line | <———-- + |
| —==——m- | (I
| 8 = k————————————- + | |
| e = - +
tommmmm e + 1
L0
L1
Fomm—mmm +
b *k—————————- > | Anchor | <=+ | | |
| ————mmm - | 1 tommmm e +
| pos = *——————————————————- > | Point I
o + |] | o —— +
I | xpos = 100 |
|11 | ypos = 0 |
Fomm - + |] | o +
a *k—————————- > | Anchor | <=+ | |
| == - | | oo +
| pos = *—————————m—mmmm > | Point I
o + | | o +
(I | xpos = 0 |
Homm - + I | ypos =0 |
t o *k————————— > | Triangle | || Rttt +
i S | (!
| | base = *-——————————- + |
| | tip = *——————————————- +
| tommmmm e + |
| I
ul *k----- + I

262

I
U2 k————————-- > | Triangle | ||
| == | |
| base = *k——————————— + |
| tip = *——————————————- +
Hmmm oo +

But there is still some sharing. In fact, if we change either of 1, a, b, or ¢, we see that change
both in t and in u2:

scala> t.sidel().end() .move(99,99)

scala> u?2
res2: Triangle = [0.0,0.0] <-> [199.0,99.0] [0.0,0.0] <-> [9.0,9.0]
[199.0,99.0] <-> [9.0,9.0]

So copy () may not be quite what we want. It does create a fresh copy of t, but because
base and tip are simply given the address of the instance pointed to by base and by tip
in t, the value of the fields end up the same in both t and u2.

So while u2 is a copy of t, they are not fully disjoint. Rather, u2 is what we call a shallow
copy of t. The “top level” of the instances are disjoint (in the sense that their fields live in
different places), but any sharing within the values held in the fields is preserved.

If we wanted a truly disjoint new triangle, then we need to make what is called a deep copy,
that is, a copy that recursively deep copies (creating new instances) for every instance held
in every variable, all the way down. Thus:

object Triangle {
def create (b:Line, a:Anchor):Triangle = new TriangleRepr(b,a)
private class TriangleRepr (b:Line, a:Anchor) extends Triangle {

private var base:Line = b
private var tip:Anchor = a

def sidel ():Line base

def side2 ():Line

Line.create(base.start(),tip)

def side3 () :Line

Line.create(base.end(),tip)

def setBase (1:Line):Unit = { base=1 }

263

def setTip (a:Anchor):Unit = { tip=a }
def copy () :Triangle = new TriangleRepr(base,tip)

def deepCopy ():Triangle =
new TriangleRepr(base.deepCopy(),tip.deepCopy())

override def toString ():String =
sidel() + " " + side2() + " " + side3()

abstract class Triangle {

def sidel ():Line

def side2 ():Line

def side3 ():Line

def setBase (1l:Line):Unit
def setTip (a:Anchor):Unit
def copy () :Triangle

def deepCopy ():Triangle

So, you see, to create a deep copy of a triangle, we recursively deep copy all the values of
all the relevant fields, and create a new triangle with those new values. This means that we
need a deepCopy () method in Anchor and in Line — let’s do that, and add some shallow
copy () methods as well, for completeness:

object Anchor {
def create (p:Point):Anchor = new AnchorRepr(p)
private class AnchorRepr (p:Point) extends Anchor {
private var pos = p
def position ():Point = pos
def move (dx:Double, dy:Double):Unit =

pos = pos.move(dx,dy) // move point and reassign
// pos to be that point

264

def copy () :Anchor =
new AnchorRepr (p)

def deepCopy () :Anchor =
new AnchorRepr (p)

override def toString ():String =
"[" + pos.xCoord() + "," + pos.yCoord() + "]"

abstract class Anchor {
def position ():Point
def move (dx:Double, dy:Double):Unit

def copy QO :Anchor
def deepCopy () :Anchor

object Line {
def create (s:Anchor, e:Anchor):Line = new LineRepr(s,e)
private class LineRepr (initS:Anchor, initE:Anchor) extends Line {

private var s:Anchor = initS
private var e:Anchor = initE

def start ():Anchor = s
def end ():Anchor = e

def setStart (a:Anchor):Unit = { s = a }
def setEnd (a:Anchor):Unit = { e = a }

def copy () :Line =
new LineRepr(s,e)

def deepCopy ():Line =
new LineRepr(s.deepCopy(),e.deepCopy())

265

override def toString ():String = s + " <> " + e
}
}

abstract class Line {

def start ():Anchor

def end ():Anchor

def setStart (a:Anchor):Unit
def setEnd (a:Anchor):Unit
def copy () :Line

def deepCopy ():Line

Note that copy() and deepCopy() for Anchor are the same. That’s because Points are
immutable — copying a Point is the same as creating a new Point. So for some classes, a
deep copy is going to look the same as a shallow copy. For the sake of clarity, let’s keep the
two methods distinct, just to make clear that they have different roles, even though they do
the same thing.

Now, if we continue with our example:redefine a,b,c,1,t as before and say:

scala> t
res2: Triangle = [0.0,0.0] <-> [199.0,99.0] [0.0,0.0] <-> [9.0,9.0]
[199.0,99.0] <-> [9.0,9.0]

scala> val u3 = t.deepCopy()
u3: Triangle = [0.0,0.0] <-> [199.0,99.0] [0.0,0.0] <-> [9.0,9.0]
[199.0,99.0] <-> [9.0,9.0]

You get that t and u3 are truly disjoint: each of their start and end fields point to different
instances. Thus:

scala> t

resd: Triangle = [0.0,0.0] <-> [1199.0,1099.0] [0.0,0.0] <-> [9.0,9.0]
[1199.0,1099.0] <-> [9.0,9.0]

scala> u2

resb: Triangle = [0.0,0.0] <-> [1199.0,1099.0] [0.0,0.0] <-> [9.0,9.0]
[1199.0,1099.0] <> [9.0,9.0]

scala> u3

266

res6: Triangle = [0.0,0.0] <-> [199.0,99.0] [0.0,0.0] <-> [9.0,9.0]
[199.0,99.0] <-> [9.0,9.0]

I will let you draw the resulting diagram.

267

