
Object-Oriented Design Lecture 10
CS 3500 Spring 2011 (Pucella) Friday, Feb 11, 2011

10 Understanding Subtyping

10.1 Upcasts

There are many ways to understand subtyping. The basic model that I will advocate is the
following. First, start with the assumption that the type checker is only happy if static types
agree, so that if an expression expects a value with static type T , the type checker will only
be happy if that expression is given a value with static type T . Thus,

val x:T = <some-expr>

if okay if the static type of <some-expr> (that is the type that <some-expr> is declared to
return — the result type of a method, say) is T, since x expects a T.

Similarly,

val x:T = <some-expr>
foo(x)

if okay if foo() has a parameter with static type T.

Let’s define the following function on Points:

def sum2 (pt:Point):Double =
pt.xCoord() + pt.yCoord()

The type checker has no problems with the following code, in which all static types agree:
Point.cartesian() returns a static Point, p expects a static Point, and sum2() expects
a static Point. Running the code form the scala interactive loop (so that we see the results
right away):

scala> {
val p:Point = Point.cartesian(1.0,2.0)
sum2(p)

}
res1: Double = 3.0

112



So if the type checker is only happy when static types agree, where does subtyping come in?
The type checker gets some help.

For every pair of subtypes D ≤ C in the program, think of there being a function ⇑C
D taking

values of type D and giving back that same value but now looking like it has type C. This
function is called an upcast, since it moves up the subtyping hierarchy by “transforming” Ds
into Cs. (There is also such a thing as a downcast, to which we’ll return below.)

When the type checker checks to see if type agrees and they don’t, it sees whether or not
it can insert an upcast (chosen from among the upcasts it has available — remember, every
pair of subtypes yields an upcast) to make the types agree.

Consider the following example, a variant of the one above:

scala> {
val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())
sum2(cp)

}
res2: Double = 3.0

Here, cp is a CPoint, and sum2() expects a Point — that’s a mismatch. Is there an upcast
available? We know Cpoint is a subtype of Point, so there is an upcast ⇑Point

CPoint, and

sum2(⇑Point
CPointcp)

has no type mismatch.

Similarly, in

scala> {
val p:Point = CPoint.cartesian(1.0,2.0,Color.red())
sum2(p)

}
res3: Double = 3.0

the binding of p to a CPoint is a type mismatch — since p expects its value to be (statically)
a Point but it is given a CPoint, but as we saw there is an upcast from CPoint to Point
and the type checker is happy to insert it so that we have

val p:Point = ⇑Point
CPointCPoint.cartesian(1.0,2.0,Color.red())

which has no type mismatch.

113



There is no need for you to write upcasts explicitly.17 The point is: upcasts are always safe
to insert. An upcast can never make a safe program unsafe. (Why?) Therefore, if a program
is safe after an upcast has been inserted, it would have been safe even without the upcast.
That means that the type checker can actually take care of all the upcasts for you, since
it never has to worry about screwing up and making a program that was safe the way you
wrote it unsafe by adding the upcast.

10.2 Downcasts

Let’s look at a different variant example. Consider the following function:

def sum3 (cpt:CPoint):Double =
cpt.xCoord() + cpt.yCoord() + cpt.color().code()

Again, if we call sum3() with a value of static type CPoint, the type checker is happy:

scala> {
val cp:CPoint = CPoint.cartesian(1.0,2.0,Color.red())
sum3(cp)

}
res4: Double = 4.0

If we do not, however, it complains bitterly:

scala> {
val p:Point = CPoint.cartesian(1.0,2.0,Color.red())
sum3(p)

}
<console>:9: error: type mismatch;
found : Point
required: CPoint

sum3(p)

As we see, the type checker did not help us: sum3() expected a value with static type
CPoint, it received a value with static type Point. To convert one into the other, it would
have needed a downcast. Again, just like for upcasts, for every pair of subtypes D ≤ C,

17Although you can if you want. For any type C and D such that D ≤ C, you can define an upcast easily.
For CPoint and Point, for instance, you can define

def upCPointToPoint (cp:CPoint):Point = cp

114



there is a downcast function ⇓C
D that takes values of type C and returns them unchanged

but looking like values of type D.

The difference between downcasts and upcasts is that the type checker will never insert
a downcast for you. That’s because downcasts are not safe. In the above example, the
downcast would be fine — why? Well, during execution, p gets an actual CPoint (the
dynamic type of p during execution is indeed CPoint) — it just looks like a Point to the
type system because the static type of p is Point (and note that the type checker will need
to throw in an upcast to make the CPoint type agree with the Point type in the val line).
Were that value p be passed to sum3(), it would be fine because sum3() will access the
xCoord(), yCoord(), and color() methods of p, and it has all of those because its dynamic
type is indeed CPoint. So we could expect that the system would insert a downcast like this:

sum3(⇓Point
CPointp)

The problem is that the system cannot guarantee that such a downcast is safe. Consider the
following variant of the code above:

scala> {
val p:Point = Point.cartesian(1.0,2.0)
sum3(p)

}
<console>:9: error: type mismatch;
found : Point
required: CPoint

sum3(p)

As far as the type system is concerned, when looking at sum3(p), it sees that p has static
type Point, and that sum3() expects a static type CPoint. Should it insert a downcast?
No, because the dynamic type of p during execution is actually a Point, and were it passed
to sum3() the method color() would not be defined. So that program’s unsafe.

When type checking sum3(), the only information that the type checker looks at is the
static type of the values it has to work with. It sees p with static type Point and sum3()
expecting a value of static type CPoint. It cannot insert a downcast because just based on
that information it doesn’t know whether it is in the first case above (where the value p
has dynamic type CPoint) or the second case above (where the value p has dynamic type
Point). The first case would be fine, the second case would be disastrous. So it has to act
conservatively, and never insert downcasts.

Bottom line: type checking requires static types to agree. upcasts can be used to bridge
static types that do not agree, and they are inserted automatically for you by the type
checker. Downcasts, however, are never inserted for you.

115


